Forgot password?
 Register account
View 3814|Reply 11

[不等式] PDE中的n元不等式

[Copy link]

2

Threads

8

Posts

55

Credits

Credits
55

Show all posts

tian27546西西 Posted 2013-11-6 18:07 |Read mode
Last edited by tian27546西西 2013-11-7 00:32设$m$是正整数,且
$$I_{m}(x,y)=\sum_{k=0}^{m-1}(e^{\cos{(x-y+2k\pi/m)}}-e^{\cos{(-x-y+2k\pi/m)}})$$
对任意的 $x,y\in [0,\dfrac{\pi}{m}]$. 求证:
$I_m(x,y) \ge 0$

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-11-6 21:48

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-11-7 00:13
m=1,2易证,
m=3几何画板实验了下,好象成立
m=4,图象纵轴扩大了$10^{13}$倍,似乎不成立了,要不更好的软件画下,,只需要x=0,y=0.2,m=4代入,看看是否为负
m=4.GIF
$type

n=4.gsp

2.53 KB, Downloads: 3409

2

Threads

8

Posts

55

Credits

Credits
55

Show all posts

 Author| tian27546西西 Posted 2013-11-7 00:29
令$x=0$,则显然$I_{m}(x,y)=0$

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-11-7 08:00
2楼函数选错了,重新实验了下,似乎也是成立的m=4.证明没头绪.

0

Threads

412

Posts

6093

Credits

Credits
6093
QQ

Show all posts

爪机专用 Posted 2013-11-7 11:38
PDE是神马?
I am majia of kuing

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-11-7 12:28
回复 6# 爪机专用


    和“数学”   搭在一起百度了下,好象指  “PDE就是偏微分方程(Partial Differential Equation)”

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2013-11-7 12:28
回复 6# 爪机专用
ODE常微分方程,
PDE偏微分方程……

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-11-7 12:32
$I_m(0,y)=I_m(\frac{\pi}{m},y)=0$,固定y,求导2次后更复杂了,
m=1,2,3,4从图象看,$(I_m(x,y))''_x\le 0$,证明依然不会.

4

Threads

23

Posts

154

Credits

Credits
154
QQ

Show all posts

pxchg1200 Posted 2013-11-7 18:21
西哥来虐场,渣渣后排膜拜。 Orz

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-11-7 22:11
西哥来虐场,渣渣后排膜拜。 Orz
pxchg1200 发表于 2013-11-7 18:21
那我前排不是虐的厉害了?

3152

Threads

7905

Posts

610K

Credits

Credits
64068
QQ

Show all posts

hbghlyj Posted 2022-11-25 06:41
$m$为偶数时的证明
$m$为奇数时如何证明呢?

Mobile version|Discuz Math Forum

2025-6-4 21:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit