Forgot password?
 Create new account
View 1133|Reply 9

一个较复杂的级数

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2021-4-21 16:38:58 |Read mode
\begin{align*}
\sum_{n=1}^{+\infty}\left[\left(\frac{1}{5n-1}+\frac{1}{5n-3}\right)\left(\frac{1}{5n-2}+\frac{1}{5n-4}\right)\right]=\frac{4\pi}{15}\sqrt{1+\frac{2}{\sqrt{5}}}
\end{align*}

Related collections:

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2021-4-21 22:34:50
回复 1# 青青子衿
发网友的解答,是用了留数的知识,我暂时没看懂。不过他最后说的那个是真的吗?
1.gif 2.gif

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2021-4-21 22:55:19
回复 2# abababa

最后那个哈哈哈O(∩_∩)O哈!

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2021-4-23 19:32:15
请网友又发了一种方法,不过这难道就是他所说的依据?
1.gif

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2021-4-25 00:20:59
m大真是全才,高才~更佩服了~以前还只是仅仅停留在几何上~

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2021-4-25 10:39:03
回复 4# abababa
查到一个这样的公式
\[\psi(n)=-\gamma+\sum_{k=1}^{n-1}\frac{1}{k}=-\gamma+H_{n-1}\]
不过这里要求那个变量是整数,而且调和级数那个还是差的形式,$\frac{1}{n-\frac{4}{5}}$还不是正常的调和级数,他所说的调和数的我还没有头绪。但总觉得什么猫和老鼠的那个是在忽悠我

54

Threads

162

Posts

1243

Credits

Credits
1243

Show all posts

血狼王 Posted at 2021-4-29 11:05:54
留数定理是通用的,我没意见
改成其他系数的话,或许更难做

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2021-5-2 23:02:10
回复 6# abababa

需要说明$\psi$的定义域问题. $\psi$函数可定义在$\mathbb C$上(实际上亚纯). 这里$\psi(x):=\dfrac{\mathrm d}{\mathrm dx}\log\Gamma(x)=\dfrac{\Gamma'(x)}{\Gamma(x)}$. 下列举些许性质:

对恒等式$\Gamma(x+1)=x\Gamma(x)$求导, 得$\Gamma'(x+1)=x\Gamma'(x)+\Gamma(x)$. 因此
$$
\dfrac{\Gamma'(x+1)}{\Gamma(x+1)}=\dfrac{x\Gamma'(x)}{x\Gamma(x)}+\dfrac{\Gamma(x)}{\Gamma(x+1)}=\dfrac{\Gamma'(x)}{\Gamma(x)}+\dfrac{1}{x}
$$
故$\psi(x+1)=\psi(x)+\dfrac{1}{x}$. 由于$\Gamma(x)$在$\mbox{Re}(x)\in(0,1]$时没有零点或极点, 因此$\psi(x)$不含零点或极点, 从而$\psi(x)$在$\mbox{Re}(x)>0$时良定义.

下面证明一般的$\psi(x)$展开表达.
$$
\psi (x+1)=-\gamma +\sum _{n=1}^{\infty }\left({\frac {1}{n}}-{\frac {1}{n+x}}\right),\qquad x\neq -1,-2,-3,\ldots
$$
先由Weierstrass乘积式得到
$$
\Gamma (x)={\frac {e^{-\gamma x}}{x}}\prod _{n=1}^{\infty }\left(1+{\frac {x}{n}}\right)^{-1}e^{x/n}
$$
取对数得
$$
\log\Gamma(x)=-\gamma x-\log x+\sum_{n=1}^\infty\left(\dfrac{x}{n}-\log\left(1+\dfrac{x}{n}\right)\right)
$$
两侧再关于$x$求导, $\dfrac{\mathrm d}{\mathrm dx}\log\Gamma(x)=\dfrac{\Gamma'(x)}{\Gamma(x)}=\psi(x)$. 因此
$$
\psi(x)=-\gamma-\dfrac{1}{x}+\sum_{n=1}^\infty\left(\dfrac{1}{n}-\dfrac{1}{n+x-1}\right)
$$
明所欲证.


***

再帮M补一下引用(查看图床需科学上网):

1. 因子分解, 行船猫 *Cruise Cat*. 3'28''

2. 调和数, 飞天猫 *The Flying Cat*. 1'30''

3. 余元思想, 台球猫 *Cue Ball Cat*. 2'52''

4. 计算能力, 麻烦的诞生 *Hatch up your troubles*. 6'24''
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2021-5-3 11:48:38
回复 8# Czhang271828

原来如此,那他在用的时候,是直接把两个括号里的$\frac{1}{x}$消去了,然后用了$\psi(1+x)=\psi(x)+\frac{1}{x}$这个性质,就正好变到下一等式。对我来说跳步太多了,太难看懂。

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2021-5-27 23:02:22

手机版Mobile version|Leisure Math Forum

2025-4-21 01:29 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list