Forgot password?
 Register account
View 662|Reply 7

[几何] 圆中平行平行证线相等

[Copy link]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2021-8-10 16:07 |Read mode
如图: 211.png
$ AB\px CD,BC\px AQ $。求证:$ AP=EP $

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2021-8-10 17:53
QQ截图20210810175140.png
不妨设圆直径为 `1`,如上图,则有
\[\frac{PA}{PA+\sin x}=\frac{AQ}{BC}=\frac{AQ}{AD}=\frac{\sin y}{\sin(2x+y)},\]分母减分子得
\[\frac{AP}{\sin x}=\frac{\sin y}{\sin(2x+y)-\sin y},\]右边分母和差化积后得
\[AP=\frac{\sin y}{2\cos(x+y)},\]也就是
\[AP\cos\angle PAE=\frac{AE}2,\]这就说明了 `PA=PE`。

当 `P` 在另一边时(楼主的图的情形)同理可证,不再重复。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2021-8-10 21:59
又这招,管他呢,可以用上 forum.php?mod=viewthread&tid=8082&extra=page=1

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-10 22:06
回复 3# 乌贼

那个IMO看来真是难~

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2021-8-10 23:25
Last edited by 乌贼 2021-8-11 01:44回复 4# isee
所以你那个三点一线,再说我只是证明线段相等思路,说不准证角为$ 180\du  $更简单

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2021-8-10 23:36
回复 5# 乌贼

哈哈哈,其实我只是把题抄上来了,我没思考~

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2021-8-18 21:22
如图: 213.png
$ M $为$ A $关于$ QP $的对称点,有\[ \angle QMB+\angle QEB=\angle QAB+\angle DCB=180\du  \]即$ QMBE $四点共圆,得\[ \angle ABQ=\angle MBQ=\angle QEM\riff \angle AEM=\angle APB \]$ N,F $分别为$ AM,AE $中点,有$ ANPF $四点共圆\[ \angle AFP=\angle ANP=90\du  \]所以\[ PA=PE \]

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2023-7-23 02:01

Mobile version|Discuz Math Forum

2025-6-4 21:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit