Forgot password?
 Register account
View 611|Reply 14

[不等式] 三元不等式

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

lemondian Posted 2022-3-30 16:23 |Read mode
已知正数$a,b,c$,求证:$(\dfrac{a+b}{c})^2+(\dfrac{b+c}{a})^2+(\dfrac{c+a}{b})^2\geqslant \dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+9$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-3-30 17:04
这不等式也太弱……

首先可以直接用 `(a+b)^2\ge4ab` 放一下,只需证
\[4\sum\frac{ab}{c^2}\ge\sum\frac ab+9,\]
还不止,由 `\sum\frac{ab}{c^2}\ge3`,只需证
\[\sum\frac{ab}{c^2}\ge\sum\frac ab,\]
也就是
\[\sum\frac1{c^3}\ge\sum\frac1{b^2c},\]
依然是那么的显然。

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2022-3-30 17:48
回复 2# kuing
我也证出来了,用均值即可

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-3-30 21:27
Last edited by 走走看看 2022-3-31 10:20回复 3# lemondian

这道题用均值也可,但不太好写。

我来练练代码:

\begin{align*}
&(\frac{a+b}{c})^2+(\frac{b+c}{a})^2+(\frac{c+a}{b})^2\\
&\ge\frac 39(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b})^2\\
&=\frac 13(\frac ab+\frac bc+\frac ca+\frac cb+\frac ba+\frac ac)^2\\
&\ge\frac 13(\frac ab+\frac bc+\frac ca+3)^2\\
&\ge\frac 13(\frac ab+\frac bc+\frac ca)^2+2(\frac ab+\frac bc+\frac ca)+3\\
&\ge\frac 13×3^2+3+(\frac ab+\frac bc+\frac ca)+3\\
&=\frac ab+\frac bc+\frac ca+9\\

\end{align*}

当且仅当 $\frac{c}{b}=\frac{b}{a}=\frac{a}{c}$且$\frac{a}{b}=\frac{b}{c}=\frac{c}{a}$,即a=b=c时取等。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2022-3-31 09:59
回复 4# 走走看看

大于等于 \geq 或 \ge
1/3 需要那么多{},\frac 13 注意 空格不能省,置顶帖里有细节

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2022-3-31 11:19
33101.jpg
这个怎么来的?

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-3-31 11:39
Last edited by 走走看看 2022-3-31 11:56回复 6# lemondian


$(\frac{a+b}{c})^2-4\frac{a+b}{c}+4\ge0$

拆成3个完全平方式的和。

414

Threads

905

Posts

110K

Credits

Credits
11001

Show all posts

 Author| lemondian Posted 2022-3-31 12:04
回复 7# 走走看看

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-3-31 13:53
回复  走走看看

大于等于 \geq 或 \ge
1/3 需要那么多{},\frac 13 注意 空格不能省,里有细节 ...
isee 发表于 2022-3-31 09:59
\frac 13 可以省空格啊,跟字母才不能省。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2022-3-31 15:32
回复 9# kuing


还真没注意到了

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-4-1 11:31
回复 2# kuing

$x^3+y^3+z^3\ge x^2y+y^2z+z^2x$ 这个不等式很难证啊,想了半天没有找到证明办法。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2022-4-1 11:50
回复 11# 走走看看


其一种方法,1#靠结尾,forum.php?mod=viewthread&tid=8210

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2022-4-1 12:31
回复 11# 走走看看

直接排序不等式啊,还用证吗

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2022-4-1 14:23
回复 13# kuing

肯定是没看到哪两组数组,哈哈哈哈
其次,多有意思,链接哪帖是为了不用排序不等式

136

Threads

741

Posts

5358

Credits

Credits
5358

Show all posts

走走看看 Posted 2022-4-1 17:08
谢谢两位!

这么说来,既可以用排序不等式,也可以用基本不等式。

Mobile version|Discuz Math Forum

2025-6-6 10:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit