Forgot password?
 Create new account
View 211|Reply 1

If $A,B∈ℂ^{n×n}$ does $ABAB=0$ imply $BABA=0$?

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

hbghlyj Posted at 2022-8-14 00:21:49 |Read mode
Putnam Problem 1990-A5
math.stackexchange.com/questions/628154
Five Theorems in Matrix Analysis, with Applications
Bits
Yes for $n ≤ 2$; no for $n > 2$.
For $n = 2$: The characteristic polynomials of $AB$ and $BA$ are the same (for any $n$). Therefore, if $AB$ is nilpotent then $BA$ is also nilpotent. So, we necessarily have $BABA = (BA)^2 = 0$.
For $n≥3$. Let $A = \begin{pmatrix} 0&0&0 \\ 0&1&0 \\ 0&0&1 \end{pmatrix}$ and $B = \begin{pmatrix} 0&1&0 \\ 0&0&1 \\ 0&0&0 \end{pmatrix}$. Then \[ABAB = (AB)^2 = \begin{pmatrix} 0&0&0 \\ 0&0&1 \\ 0&0&0 \end{pmatrix}^2 = 0\]but \[BABA = (BA)^2 = \begin{pmatrix} 0&1&0 \\ 0&0&1 \\ 0&0&0 \end{pmatrix}^2 = \begin{pmatrix}0&0&1\\0&0&0\\0&0&0 \end{pmatrix} \neq 0.\]

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

 Author| hbghlyj Posted at 2023-3-20 17:03:39
Linear Algebra Problem Book (Dolciani Mathematical Expositions) by Halmos, Paul R.
Screenshot 2023-03-19 at 20-04-40 论坛 - 悠闲数学娱乐论坛(第3版) - Powered by Discuz!.png

手机版Mobile version|Leisure Math Forum

2025-4-22 03:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list