|
复数$z_1,z_2,z_3$共线的充要条件为$$\bar{z}_{1} z_{2}+\bar{z}_{2} z_{3}+\bar{z}_{3} z_{1}\in\Bbb R$$
证明:
三角形$z_1,z_2,z_3$的有向面积为
$A\left(z_{1}, z_{2}, z_{3}\right)=\frac{i}{4}\left|\begin{array}{lll}z_{1} & \bar{z}_{1} & 1 \\ z_{2} & \bar{z}_{2} & 1 \\ z_{3} & \bar{z}_{3} & 1\end{array}\right|$
复数$z_1,z_2,z_3$共线$⇔A\left(z_{1}, z_{2}, z_{3}\right)=0⇔\bar{z}_{1} z_{2}+\bar{z}_{2} z_{3}+\bar{z}_{3} z_{1}=z_1\bar{ z}_2+z_2\bar{z}_3+z_3\bar{z}_1$ |
|