Forgot password?
 Register account
View 605|Reply 10

[函数] 指数幂计算问题,到底指数幂与根式之间是怎么转化的

[Copy link]

3

Threads

2

Posts

28

Credits

Credits
28

Show all posts

永远 Posted 2023-1-1 15:25 |Read mode
Last edited by hbghlyj 2025-4-4 07:41指数幂计算问题,是等于8还是-8,到底指数幂与根式之间是怎么转化的,另外负数的指数幂是怎么规定的

不是说有\({\left( { - 2} \right)^{\frac{6}{2}}} = {[{\left( { - 2} \right)^6}]^{\frac{1}{2}}} = 8\)

请问这个到底是怎么计算的:\({\left( { - 2} \right)^{\frac{6}{2}}}\)

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-1-1 16:13
\[{\left( { - 2} \right)^{\frac{6}{2}}} = {[{\left( { - 2} \right)^6}]^{\frac{1}{2}}} = 8\]
是谁说的?

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2023-1-1 16:20
按运算顺序,应该先算肩上的。

Comment

赞同  Posted 2023-1-1 17:12

3

Threads

2

Posts

28

Credits

Credits
28

Show all posts

 Author| 永远 Posted 2023-1-1 18:00
Czhang271828 发表于 2023-1-1 16:13
\[{\left( { - 2} \right)^{\frac{6}{2}}} = {[{\left( { - 2} \right)^6}]^{\frac{1}{2}}} = 8\]
是谁说的 ...
等于8也没错啊

3

Threads

2

Posts

28

Credits

Credits
28

Show all posts

 Author| 永远 Posted 2023-1-1 18:01
请问2楼有错吗

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-1-1 19:34
当然错了啊. 哪本教材写着 $(-a)^{bc}=((-a)^b)^c$, 其中 $a,b,c>0$.

已经规定的有: 整数次方是多次自乘的简写形式, 负数次成立当且仅当有乘法逆元. $a^b$ ($a>0$) 定义为 $e^{b\ln a}$ (取值还是正实数). 此外没有别的规定.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-1-1 19:38
Last edited by hbghlyj 2025-4-4 07:40(-2)^(6/2)输入这帖2#的句法分析器得 $-8$
Screenshot 2023-01-01 at 11-39-51 Online Version » PEG.js – Parser Generator f.png
输入-2^(6/2)得 $-8$
输入(-2)^6/2得 $32$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-1-1 19:49

补充6#

对数函数

$\begin{aligned} \operatorname{Ln}z&=\ln|z|+i\operatorname{Arg}z\\ &=\ln|z|+i(\arg z+2k\pi)\\ &(k=0,\pm1,\pm2,\cdots) \end{aligned}$

一般幂函数

$\begin{aligned} w&=z^\alpha\\ &=e^{\alpha \operatorname{Ln} z}\\ &=e^{\alpha[\ln|z|+i(\arg z+2k\pi)]}\\ &(k=0,\pm1,\pm2,\cdots) \end{aligned}$
  1. $\alpha$ 为正整数时为单值函数
  2. $\alpha=\frac{m}{n},\,m,n\in\Bbb Z,\,n>0$ 且 $(m,n)=1$ 时为 $n$ 值函数
  3. 其他情况(无理数,复数)为无穷多值函数

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-14 01:29

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-25 08:07

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit