Forgot password?
 Register account
View 264|Reply 4

[几何] 平行六面体的体积

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-1-5 05:43 |Read mode
向量 $\mathbf a,\mathbf b,\mathbf c$ 长为 $a,b,c$,夹角为 $α,β,γ$,则张成的平行六面体的体积为 390px-Parallelepiped-bf.svg[1].png
$$V=\sqrt {1+2\cos(\alpha )\cos(\beta )\cos(\gamma )-\cos ^{2}(\alpha )-\cos ^{2}(\beta )-\cos ^{2}(\gamma )}$$
证明 Wikipedia
设 $M$ 为 3×3 矩阵, 列向量为 $\mathbf {a} ,\mathbf {b} ,\mathbf {c}$.\[V^{2}=\left(\det M\right)^{2}=\det M\det M=\det M^{\mathsf {T}}\det M=\det(M^{\mathsf {T}}M)\]
展开行列式, 使用标量积的定义 $\mathbf {a} \cdot \mathbf {a} =a^{2}, \dots,\mathbf  a ⋅\mathbf  b = a b \cos ⁡ γ,\mathbf  a ⋅\mathbf  c = a c \cos ⁡ β,\mathbf  b ⋅\mathbf  c = b c \cos ⁡ α , \dots$\begin{aligned}V^{2}&=\det {\begin{bmatrix}\mathbf {a} \cdot \mathbf {a} &\mathbf {a} \cdot \mathbf {b} &\mathbf {a} \cdot \mathbf {c} \\\mathbf {b} \cdot \mathbf {a} &\mathbf {b} \cdot \mathbf {b} &\mathbf {b} \cdot \mathbf {c} \\\mathbf {c} \cdot \mathbf {a} &\mathbf {c} \cdot \mathbf {b} &\mathbf {c} \cdot \mathbf {c} \end{bmatrix}}\\&=\ a^{2}\left(b^{2}c^{2}-b^{2}c^{2}\cos(\alpha )\right)\\&\quad -ab\cos(\gamma )\left(ab\cos(\gamma )c^{2}-ac\cos(\beta )\;bc\cos(\alpha )\right)\\&\quad +ac\cos(\beta )\left(ab\cos(\gamma )bc\cos(\alpha )-ac\cos(\beta )b^{2}\right)\\&=\ a^{2}b^{2}c^{2}-a^{2}b^{2}c^{2}\cos(\alpha )\\&\quad -a^{2}b^{2}c^{2}\cos ^{2}(\gamma )+a^{2}b^{2}c^{2}\cos(\alpha )\cos(\beta )\cos(\gamma )\\&\quad +a^{2}b^{2}c^{2}\cos(\alpha )\cos(\beta )\cos(\gamma )-a^{2}b^{2}c^{2}\cos(\beta )\\&=\ a^{2}b^{2}c^{2}\left(1-\cos ^{2}(\alpha )-\cos ^{2}(\gamma )+\cos(\alpha )\cos(\beta )\cos(\gamma )+\cos(\alpha )\cos(\beta )\cos(\gamma )+\cos ^{2}(\beta )\right)\\&=\ a^{2}b^{2}c^{2}\;\left(1+2\cos(\alpha )\cos(\beta )\cos(\gamma )-\cos ^{2}(\alpha )-\cos ^{2}(\beta )-\cos ^{2}(\gamma )\right).\end{aligned}$^\blacksquare$

令 $V=0$ 得
\[α+β+γ=2nπ\implies\cos^2α+\cos^2β+\cos^2γ-2\cos α\cos β\cos γ=1\]
令$A=π-α,B=π-β,C=π-γ$ 得
\[A+B+C=(2n-1)π\implies\cos^2A+\cos^2B+\cos^2C+2\cos A\cos B\cos C=1\]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-1-5 05:59
相关问题
三面角 $O–XYZ$的平面角是$a=∠ZOY,b=∠ZOX,c=∠YOX$。求 $OZ$ 与平面 $OXY$ 之间的夹角 $θ$。
设$|OX|=|OY|=|OZ|=1$,使用上面的公式,
\begin{align*}
V &= |OX|\;|OY|\;|OZ|\;\sqrt{1+2\cos a \cos b \cos c - \cos^2 a - \cos^2 b - \cos^2 c} \\
&= \sqrt{1+2\cos a \cos b \cos c - \cos^2 a - \cos^2 b - \cos^2 c}
\end{align*}
$V$也等于“底面积乘以高”:由 $OX$ 和 $OY$ 张成的平行四边形面积乘以高 $h=\sin\theta$
\[V = 2|\triangle XOY| \cdot h= |OX|\;|OY|\;\sin a \cdot h = h \sin a = \sin\theta \; \sin a\]
合并两式得
$$\sin\theta = \frac{\sqrt{1+2\cos a \cos b \cos c - \cos^2 a - \cos^2 b - \cos^2 c}}{\sin a}$$

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2023-1-5 09:09 From mobile phone
1楼右边的图在手机版完全看不见(被挤压至宽度为零)

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-1-5 09:16
色k 发表于 2023-1-5 02:09
1楼右边的图在手机版完全看不见(被挤压至宽度为零)
我想出来一个办法, 可以把td的宽度设置为200

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-1-5 09:20
色k 发表于 2023-1-5 02:09
1楼右边的图在手机版完全看不见(被挤压至宽度为零)
终于明白了, 把公式放到外面就好了.

Mobile version|Discuz Math Forum

2025-5-31 10:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit