|
Last edited by 青青子衿 2023-1-7 11:39已知弧度$\,\phi,\,\chi,\,\psi\,$,若弧度$\,\sigma,\tau\,$满足
\begin{align*}
\dfrac{1}{\sin(\sigma)\sin(\tau)}=&\dfrac{\sin(\chi)\sin(\psi)\cos(\phi)}
{\left[\sin ^2(\phi )
-\sin^2(\chi )\right]\left[\sin^2(\phi )
-\sin ^2(\psi )\right]}
\\
&\qquad+\dfrac{\sin(\phi)\sin(\psi)\cos(\chi)}
{\left[\sin ^2(\chi)-
\sin^2(\psi)\right]\left[\sin^2(\chi)-
\sin^2(\phi)\right]}\\
&\qquad\qquad+\frac{\sin(\phi)\sin(\chi)\cos(\psi)}
{\left[\sin^2(\psi)-
\sin^2(\chi)\right]\left[\sin^2(\psi)-
\sin^2(\phi)\right]}\\
\frac{\sin(\tau)\cos(\tau)-
\sin(\sigma)\cos(\sigma)}
{\sin(\sigma)\sin(\tau)
\left[\sin^2(\sigma)-
\sin^2(\tau)\right]}=
&\dfrac{\sin(\phi)\cos(\chi)\cos(\psi)}
{\left[\sin ^2(\phi )
-\sin^2(\chi )\right]\left[\sin^2(\phi )
-\sin ^2(\psi )\right]}
\\
&\qquad+\dfrac{\sin(\chi)\cos(\phi)\cos(\psi)}
{\left[\sin ^2(\chi)-
\sin^2(\psi)\right]\left[\sin^2(\chi)-
\sin^2(\phi)\right]}\\
&\qquad\qquad+\frac{\sin(\psi)\cos(\phi)\cos(\chi)}
{\left[\sin^2(\psi)-
\sin^2(\chi)\right]\left[\sin^2(\psi)-
\sin^2(\phi)\right]}\\
\end{align*}
是否有$\,\phi+\chi+\psi-\sigma-\tau\equiv0\pmod{\pi}\,$? |
|