Forgot password?
 Create new account
View 130|Reply 1

$A^2-2AB+B^2=O\implies f_A=f_B$

[Copy link]

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-1-9 19:41:03 |Read mode
若 $n$ 阶矩阵 $A$ 与 $B$ 满足 $A^2-2AB+B^2=O$, 则 $A$ 与 $B$ 有相同的特征多项式, 即 $\det (xI-A)=\det (xI-B)$.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

 Author| Czhang271828 Posted at 2023-1-9 19:56:50
个人做法: 若 $A^2-2AB+B^2=0$, 显然有
$$
(xI-A)^2-2(xI-A)(xI-B)+(xI-B)^2=0.
$$
从而只需证明 $\det (A)=\det (B)$. 化原式为 $A(A-B)=(A-B)B$.

1. $n=1$ 时, $\det A=\det B$ 是显然的.

2. 若 $n\leq k-1$ 时成立 ($k\geq 2$), 下证明 $n=k$ 时 $\det A=\det B$.

   a. 若 $A-B$ 可逆, 则显然.

   b. 若 $\ker(A-B)=:V\neq 0$, 则 $AV=BV\subseteq V$. 注意到 $A|_V=B|_V$, 从而在 $V\oplus V^\perp$ 下有矩阵表示
      $$
      A=\begin{pmatrix}C_V&A_{12}\\O&A_{22}\end{pmatrix},\quad B=\begin{pmatrix}C_V&B_{12}\\O&B_{22}\end{pmatrix}.
      $$
      带入原式得 $A_{22}^2-2A_{22}B_{22}+B_{22}^2=0$, 据归纳假设知
      $$
      \det A=\det C_V\cdot \det A_{22}=\det C_V\cdot \det B_{22}=\det B.
      $$

手机版Mobile version|Leisure Math Forum

2025-4-21 14:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list