Forgot password?
 Register account
View 213|Reply 2

[几何] 一个简单图形中蕴含的正切关系

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2023-1-10 21:08 |Read mode
Last edited by hbghlyj 2025-4-7 17:01AB 为圆 O 的直径,C 在 AB 的延长线上,满足 $BC=OB$,
过点 $C$ 作直线交圆 $O$ 于 $M, N$ 两点,其中 $N$ 在 $M, C$ 之间,$P$ 为弧 $AB$ 的中点,记 $\angle OPM=\alpha, \angle OPN=\beta$,
求证$\tan \alpha \tan \beta-1=2(\tan \alpha-\tan \beta)$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-1-10 22:14
对待证等式两边乘 `\cos \alpha\cos \beta` 化简可知等价于证明
\[-\cos(\alpha+\beta)=2\sin(\alpha-\beta),\]
易证
\begin{align*}
\alpha+\beta&=\pi-\frac{\angle MON}2,\\
\alpha-\beta&=\angle APM-\angle BPN\\
&=\angle ANM-\angle BAN\\
&=\angle C,
\end{align*}
所以等价于证
\[\cos\frac{\angle MON}2=2\sin C,\]
不妨设圆半径为 `1`,记 `O` 到 `MN` 距离为 `d`,则 `\cos(\angle MON/2)=d`,而 `OC=2`,故 `\sin C=d/2`,故上式成立。

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2023-1-11 10:13
学习了啊!,谢谢!

Mobile version|Discuz Math Forum

2025-5-31 10:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit