Forgot password?
 Create new account
View 116|Reply 0

Log[z^2-z]和Log[z]+Log[z-1]

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

hbghlyj Posted at 2023-1-12 22:12:52 |Read mode
比如Log[z]在$\Bbb C\setminus(-∞,0]$解析
         In[]:= FunctionAnalytic[{Log[z],!(Re[z]<=0&&Im[z]==0)},z]
         Out[]= True
因此Log[z^2-z]在$z^2-z\nleq0$解析
         In[]:= Reduce[z^2-z<=0,z,Complexes]
         Out[]= (0<=Re[z]<1/2&&Im[z]==0)||Re[z]==1/2||(1/2<Re[z]<=1&&Im[z]==0)
显然$z^2-z\leq0$等价于$z\in[0,1]\cup\{z:\operatorname{Re}z=\frac12\}$
因此Log[z^2-z]在$\Bbb C\setminus[0,1]\setminus\{z:\operatorname{Re}z=\frac12\}$解析
         In[]:= FunctionAnalytic[{Log[z^2-z], !(0 <= z <= 1 || Re[z] == 1/2)},z]
         Out[]= True
         In[]:= FunctionSingularities[Log[z^2-z],z,Complexes]
         Out[]= -z+z^2==0||(Im[-z+z^2]==0&&Re[-z+z^2]<=0)
但是Log[z]+Log[z-1]在这个不解析
         In[]:= FunctionAnalytic[{Log[z]+Log[z-1], !(0 <= z <= 1 || Re[z] == 1/2)},z]
         Out[]= False
Log[z]+Log[z-1]在$z\nleq0\land z-1\nleq0$解析, 即$\Bbb C\setminus(-∞,1]$解析
         In[]:= FunctionAnalytic[{Log[z]+Log[z-1],!(z<=1)},z]
         Out[]= True

手机版Mobile version|Leisure Math Forum

2025-4-22 06:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list