Forgot password?
 Register account
View 251|Reply 1

[不等式] 全对称四次不等式

[Copy link]

69

Threads

436

Posts

4389

Credits

Credits
4389

Show all posts

hejoseph Posted 2023-1-14 17:23 |Read mode
最近计算得到的一个不等式:已知 $a$、$b$、$c$ 都是正数,则
\[
11(a^4+b^4+c^4)+8(a^3b+ab^3+a^3c+ac^3+b^3c+bc^3)\geqslant 15(a^2b^2+a^2c^2+b^2c^2)+12abc(a+b+c)
\]
当且仅当 $a=b=c$ 时取得等号。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-1-14 17:34
很弱很简单,由 4 次 schur 有 `\sum a^4+abc(a+b+c)\geqslant\sum(a^3b+ab^3)`,
于是只需证 `19\sum(a^3b+ab^3)\geqslant15\sum a^2b^2+23abc(a+b+c)`,显然成立。

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit