Forgot password
 Register account
View 188|Reply 3

[不等式] 我回来啦

[Copy link]

54

Threads

160

Posts

0

Reputation

Show all posts

血狼王 posted 2023-1-19 13:49 |Read mode
若非负实数$a,b,c$满足$abc\geq 1.$
求证
$$\frac{15a^2+1}{(5a+3)^3}+\frac{15b^2+1}{(5b+3)^3}+\frac{15c^2+1}{(5c+3)^3}\leq \frac{3}{32}.$$
血狼王者,格罗特克斯(Grotex)是也。
AOPS的id:Grotex

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-1-19 15:48
wellcome back

用函数方法分类讨论好了,令
\[f(x)=\frac{15x^2+1}{(5x+3)^3},\quad x\geqslant0,\]

\[f'(x)=-\frac{15(x-1)(5x-1)}{(5x+3)^4},\]
所以 `f(x)` 在 `(0,1/5)` 上 `\searrow`,在 `(1/5,1)` 上 `\nearrow`,在 `(1,+\infty)` 上 `\searrow`,而 `f(0)=1/27>f(1)=1/32`,所以 `f(x)_{\max}=f(0)`,又由
\[f(x)-f(1)=-\frac{5(x-1)^2(25x-1)}{32(5x+3)^3},\]
可知当 `x\geqslant1/25` 时 `f(x)\leqslant f(1)`,所以分类,不妨设 `a\leqslant b\leqslant c`,则:

(1)若 `a\geqslant1/25`,则 `f(a)+f(b)+f(c)\leqslant3f(1)=3/32`;

(2)若 `a<1/25`,则由条件知 `bc>25`,则 `c>5`,所以
\[f(a)+f(b)+f(c)<2f(0)+f(5)=\frac{6757}{74088}<\frac3{32}.\]

Comment

是welcome吧(小声)  posted 2023-1-21 11:29

54

Threads

160

Posts

0

Reputation

Show all posts

original poster 血狼王 posted 2023-1-21 08:59
kuing 发表于 2023-1-19 15:48
wellcome back

用函数方法分类讨论好了,令
谢谢,这道题其实只是个副产品,关键结果我暂时没写出来,不过估计解出来都是类似的套路
后面看看吧
血狼王者,格罗特克斯(Grotex)是也。
AOPS的id:Grotex

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 13:54 GMT+8

Powered by Discuz!

Processed in 0.011848 seconds, 23 queries