Forgot password
 Register account
View 176|Reply 1

可积函数在∞趋于0

[Copy link]

3218

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-1-20 05:49 |Read mode
Do integrable functions vanish at infinity?
可积函数在∞存在极限, 则为0.
但可积函数在∞不一定存在极限: 函数 $f:\mathbb R\to\mathbb R$ 在负半轴为0. 对每个$n\in\Bbb Z^+$,$$f(x)=\begin{cases}n&x\in\left[n,n+\frac{1}{n^3}\right]\\0&x\in\left(n+\frac{1}{n^3},n+1\right)\end{cases}$$则\[\int_{-\infty}^\infty f(x)\rmd x=\sum_{n=1}^\infty\frac1{n^2}<∞\]但是$f$在∞极限不存在

3218

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-1-20 05:51
Integral Transforms page 46
Exercise: think of an integrable function which does not satisfy this condition for any $p$. The point? It is not true that if a function is integrable then it must vanish at infinity. [Hint: think of narrow top-hats near integer values of $x$.]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:43 GMT+8

Powered by Discuz!

Processed in 0.011383 seconds, 22 queries