除數函數 $\sigma _{x}(n)$ 为 $n$ 的正约数的 $x$ 次幂之和. 则
$$\sigma _{x}(n)=\sum _{\mu =1}^{n}\mu ^{x-1}\sum _{\nu =1}^{\mu }\cos {\frac {2\pi \nu n}{\mu }}$$
证明只需证明\begin{equation}\sum _{\nu =1}^{\mu }\cos {\frac {2\pi \nu n}{\mu }}=\begin{cases}\mu&\mu\mid n\\
0&\mu\nmid n
\end{cases}\end{equation}当 $\mu\mid n$ 时, 每一项都是1; 当 $\mu\nmid n$ 时,
$$2\sum _{\nu =1}^{\mu }\cos {\frac {2\pi \nu n}{\mu }}=\sum _{\nu =1}^{\mu }\exp \left(\nu{\frac {2\pi i n}{\mu }}\right)+\exp\left(-\nu{\frac {2\pi i n}{\mu }}\right)$$使用等比数列求和公式、然后$\exp\left((μ+1)\frac{2\pi i n}μ\right)-\exp\left(\frac{2\pi i n}μ\right)=0$✅
|