我们并不难得知\(\sum \frac {1}{n^2}\)是个收敛级数,
因为 \begin {align} \frac {1}{1^2}+\frac {1}{2^2}+\frac {1}{3^2}+...&< \frac {1}{1\times 1} + \frac {1}{1\times 2} +\frac {1}{2\times 3} + \frac {1}{3\times 4} + ... \notag \\ &=\frac {1}{1} + \frac {1}{1} - \frac {1}{2} +\frac {1}{2}-\frac {1}{3} + \frac {1}{3} - \frac {1}{4}+ ... \notag \end {align}
但寻找它的极限却得花上一般功夫.
早期, 大数学家欧拉曾以不严谨的方式求得极限值为\(\frac {\pi ^2}{6}\).
即使不严谨,
我们始终相信这个值正是级数的极限
—– $n$项部分和的求取确实让我们相信它.
这个极限较有趣的证明有三个:
其一是用复变函数论;
其二是用Fourier级数;
其三是基础证明:
用中学数学搭配夹挤定理.
本文试图重述第三项证明.
有趣却吊诡的是,
这个证明使用了以下的手法:
- 二项式定理.
- 棣美弗定理.
- 根与系数.
- \(\sin \theta \lt \theta \lt \tan \theta \).
- \(1+\cot ^2 \theta = \csc ^2 \theta \).
- 夹挤定理.
我们很难联想到它们并直截了当又如此巧妙地使用它,
但它却在最关键的部分发挥作用!
以二项式定理展开此式
\begin {align} (\cos \theta + i \sin \theta )^{2n+1} &= \cos ^{2n+1} \theta + C_1^{2n+1} \cos ^{2n} (i\sin \theta ) + C_2^{2n+1} \cos ^{2n-1} (i\sin \theta )^2 + ... + C_n^n (i\sin \theta )^{2n+1}\notag \\ &= (\cos ^{2n+1}\theta - C_2^{2n+1}\cos ^{2n-1}\theta \sin ^2 \theta + ... + \_\_\_\_) \notag \\ &\qquad + i\cdot ( C_1^{2n+1} \cos ^{2n} (\sin \theta ) - C_3^{2n+1} \cos ^{2n-2} (\sin \theta )^3 + ... + \_\_\_ )\notag \end {align}
其中 \begin {align} \theta = \frac {k\pi }{2n+1},\qquad \quad k = 1,2,3,...,n.\notag \end {align}
又对这类的\(\theta \),
由棣美弗定理 \begin {align} (\cos \theta + i \sin \theta )^{2n+1} &= (\cos \frac {k\pi }{2n+1} + i \sin \frac {k\pi }{2n+1})^{2n+1}\notag \\ &= \cos k\pi + i\sin k\pi \in \mathbb {R}\notag \end {align}
因此我们发现 \begin {align} C_1^{2n+1} \cos ^{2n} (\sin \theta ) - C_3^{2n+1} \cos ^{2n-2} (\sin \theta )^3 + ... + \_\_\_ = 0 \notag \end {align}
由于 \(\theta = \frac {k\pi }{2n+1}\in (0,\frac {\pi }{2})\), \(\sin ^{2n+1} \theta \ne 0\). 对上式的两边同除以
\(\sin ^{2n+1}\theta \), 得到 \begin {align} C_1^{2n+1} \cot ^{2n} - C_3^{2n+1} \cot ^{2n-2} + C_5^{2n+1} \cot ^{2n-4} + ... + \_\_\_ = 0 \notag \end {align}
观察下述方程: \begin {align} C_1^{2n+1} Y^n - C_3^{2n+1} Y^{n-1} + C_5^{2n+1} Y^{n-2} + ... + \_\_\_ = 0 \notag \end {align}
我们知道它至多有\(n\)个相异根.
然而, 由上述的讨论,
我们确实找出了$n$个相异根:
\begin {align} \cot ^2 \frac {k\pi }{2n+1}, \qquad k = 1,2,3, ..., n.\notag \end {align}
由根与系数的关系,我们发现其$n$个根之和 \begin {align} \sum _{k=1}^n \cot ^2 \frac {k\pi }{2n+1} = \cot ^2\frac {\pi }{2n+1} + \cot ^2 \frac {2\pi }{2n+1} + ... +\cot ^2 \frac {n\pi }{2n+1} = \frac {C_3^{2n+1}}{C_1^{2n+1}}= \frac {(2n)(2n-1)}{6}.\notag \end {align}
至此, 不难看见, 我们已经
”制造” 出了平方和, \(\pi \),
以及极限值分母的6.
如果从结果论,
我们现在要让\(\pi \) 脱离\(\cot \).
利用此不等式: \begin {align} \sin \theta \lt \theta \lt \tan \theta \notag , \qquad \text {当} \theta \in (0, \frac {\pi }{2}).\notag \end {align}
则有 \begin {align} 1+\cot ^2 \theta = \csc ^2 \theta \gt \frac {1}{\theta ^2}\gt \cot ^2 \theta \notag \end {align}
将\(\theta \)代回\(\frac {k\pi }{2n+1}\),
并且求出对\(k\)从1至\(n\)的和,
得到 \begin {align} n + \sum _{k=1}^n \cot ^2 {k\pi }{2n+1} > \sum _{k=1}^n \frac {1}{(\frac {k\pi }{2n+1})^2} > \sum _{k=1}^n \cot ^2 {k\pi }{2n+1} \notag \end {align}
根据前式, 可改写上式成
\begin {align} \frac {\pi ^2}{(2n+1)^2}(n + \frac {(2n)(2n-1)}{6}) > \sum _{k=1}^n \frac {1}{k^2} > \frac {\pi ^2}{(2n+1)^2}(\frac {(2n)(2n-1)}{6}) \notag \end {align}
再由夹挤定理,
即可得证.
|