Forgot password?
 Register account
View 243|Reply 1

[几何] 抛物线 成等角的焦半径之和

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-2-2 03:10 |Read mode
Last edited by hbghlyj 2023-3-31 14:00抛物线$y^2=4(x+1)$上的点$A_i(i=1,\cdots,n)$, 射线$OA_i$的倾斜角为$\frac{2i-1}nπ$. 求证 $\displaystyle\sum_{i=1}^n|OA_i|=n^2$
$n=1$\begin{tikzpicture}[x=.5cm,y=.5cm]\draw[domain=-4:4]plot({(\x)^2/4-1},\x);\fill(-1,0)circle(2pt);\fill[red](0,0)circle(2pt);\end{tikzpicture}$n=2$\begin{tikzpicture}[x=.5cm,y=.5cm]\draw[domain=-4:4]plot({(\x)^2/4-1},\x);\draw[only marks,mark=*]plot coordinates{(90:2)(270:2)};\fill[red](0,0)circle(2pt);\end{tikzpicture}
$n=3$\begin{tikzpicture}[x=.5cm,y=.5cm]\draw[domain=-4:4]plot({(\x)^2/4-1},\x);\draw[only marks,mark=*]plot coordinates{(60:4)(180:1)(300:4)};\fill[red](0,0)circle(2pt);\end{tikzpicture}$n=4$\begin{tikzpicture}[x=.5cm,y=.5cm]\draw[domain=-5:5]plot({(\x)^2/4-1},\x);\draw[only marks,mark=*]plot coordinates{(45:6.82843)(135:1.17157)(225:1.17157)(315:6.82843)};\fill[red](0,0)circle(2pt);\end{tikzpicture}
$n=5$\begin{tikzpicture}[x=.5cm,y=.5cm]\draw[domain=-6.4:6.4]plot[smooth]({(\x)^2/4-1},\x);\draw[only marks,mark=*]plot coordinates{(36:10.47214)(108:1.52786)(180:1) (252:1.52786)(324:10.47214)};\fill[red](0,0)circle(2pt);\end{tikzpicture}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-31 21:00

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit