Forgot password?
 Register account
View 320|Reply 6

[几何] 等腰三角形求值

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2023-2-8 22:01 |Read mode
三角形$ABC$中,$AB=AC,CM$为角$ACB$的平分线,$AD,ME$均垂直于$BC$,垂足分别为$D,E$.若$CM$的垂线$MF$交$BC$于点$F$,且$CF=10$,求$DE$的长。 QQ图片20230208215940.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-2-8 23:51
我用麻烦的三角函数方法算出 DE:CF=1:4 😥 看来肯定有简单的几何解法,所以我的过程暂时就不写了😄

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-2-9 12:33 From mobile phone
简单写一下,暂时画不了图。延长 FM  CA 交于 P,将 ED 向上平移作 MN,则 MN 是三角形 PCF 中位线的一半

Comment

果然简单👍  Posted 2023-2-9 13:03

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2023-2-9 23:51
Czhang271828 发表于 2023-2-9 12:33
简单写一下,暂时画不了图。延长 FM  CA 交于 P,将 ED 向上平移作 MN,则 MN 是三角形 PCF 中位线的一半 ...
谢谢两位。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2023-2-13 01:56
取$ CF $中点$ N $,在直角$ \triangle CMF $中有\[ MN=CN=\dfrac{1}{2}CF=5 \]\[ \angle MNF=2\angle MCF=\angle FBN \]即$ E $为$ BN $的中点,所以\[ DE=\dfrac{1}{2}(BC-BN)=\dfrac{1}{2}CN=\dfrac{5}{2} \]

Comment

好久不见😃  Posted 2023-2-13 12:14

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 赞一个!

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit