Forgot password?
 Register account
View 246|Reply 2

[数论] Perron's criterion 不是“整数多项式” 的反例?

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-2-14 18:10 |Read mode
整数多项式讲的Perron's criterion, 能否举出一个$f(x)\in\Bbb Q[x]\setminus\Bbb Z[x]$定理不成立的例子?
Perron's criterion: Suppose $f(x)=x^{n}+a_{n-1}x^{n-1}+\cdots +a_{1}x+a_{0}\in\Bbb Z[x]$, where $a_{0}\neq 0$. If either of the following two conditions applies:
  • $|a_{n-1}|>1+|a_{n-2}|+\cdots +|a_{0}|$
  • $|a_{n-1}|=1+|a_{n-2}|+\cdots +|a_{0}|,\quad f(\pm 1)\neq 0$
then $f$ is irreducible over $\Bbb Z$ (and by Gauss's lemma also over $\Bbb Q$).

Comment

很简单啊, $f(x)=x+\frac 52x+1=(x+\frac 12)(x+2)$. 其中 $\frac 52>1+1=2$.  Posted 2023-5-30 16:46

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-30 16:47
$f(x)=x^\color{#f00}2+\frac 52x+1=(x+\frac 12)(x+2)$

Mobile version|Discuz Math Forum

2025-5-31 11:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit