积分Example 6.11发现是相同的一道题
Example 6.11. For \(s∈ℝ\), \(\int_{-∞}^∞e^{-isx}e^{-x^2}\rmd x\) Note the integrand is continuous so measurable. \(| e^{-isx}e^{-x^2}|=e^{-x^2}∈ℒ^1(ℝ)\) [See this by noting e\(^{-x^2}<e^{-| x |}\) for \(| x |>1\)] Let \(g_n(x)=\frac{(-isx)^n}{n!}e^{-x^2}\) \(\sum_{n=0}^∞g_n(x)=e^{-isx}e^{-x^2}\) [convergence by power series expansion] \(\sum_{n=0}^∞| g_n(x) |=e^{| sx |-x^2}≤e^{s^2/2}e^{-x^2/2}\) [using \(| sx |≤\frac{x^2+s^2}{2}\)] \(\therefore \sum | g_n |∈ℒ^1(ℝ)\) By Theorem 6.8[term by term integration] \[\int_{-∞}^∞e^{-isx}e^{-x^2}\rmd x=\sum_{n=0}^∞\int_0^∞\frac{(-isx)^n}{n!}e^{-x^2}\rmd x\]As \(\int_{-∞}^∞e^{-x^2}\rmd x=\sqrtπ\) [See later] and \(\int_{-∞}^∞\frac{(-isx)^n}{n!}e^{-x^2}=0\) for \(n\) odd, can carefully use parts & induction \[\int_{-∞}^∞\frac{(-isx)^n}{n!}e^{-x^2}=\left\{\begin{array}{ll}\frac{(2 m) ! \sqrt{π}}{4^m m!}& n=2 m, \text{even}\\ 0 & n \text{ odd}\end{array}\right.\]Thus\[\int_{-∞}^∞e^{-isx}e^{-x^2}\rmd x=\sum_{m=0}^∞\frac{(-is)^{2 m}\sqrt{π}}{4^m m!}=\sqrt{π}e^{-s^2/4}\] |