Forgot password?
 Create new account
View 127|Reply 3

[几何] 过四点的所有二次曲线公共的一对共轭方向的夹角

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

hbghlyj Posted at 2023-2-18 08:52:58 |Read mode
Last edited by hbghlyj at 2023-2-18 10:50:00为了从斯坦纳提出的几何性质证明3#需要解决以下平面几何题, 来求助大家
四边形$ABCD$的内角是$α,β,γ,δ$
直线$AD,BC$交于$E$.
点$F$在直线$AB$上, 使得$EF\px CD$
点$G,H$在直线$AB$上, 使得$FG=FH=\sqrt{FA·FB}$
求证\begin{equation}\label1
4\cot^2\left(\angle GEH\right)={\sin^2(α + γ) \over \sin(α) \sin(β) \sin(γ) \sin(δ)}\end{equation}
$type 过四点的所有二次曲线公共的一对共轭方向的夹角.ggb (30.29 KB, Downloads: 35)
自动导出Asymptote代码, (手动修改了线条粗细) 如下

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-18 17:01:12

首先$CD$是多余的, 擦掉$CD$只保留$EF$. 直线$AB,AE,BE,EF$之间的夹角都能由$\alpha,\beta,\gamma,\delta$表示.
作$EI\perp AB$, 设$EI=1$, 则$AI=\cot(\pi-\alpha)=-\cot(\alpha),BI=\cot(\beta)$.
$\angle EFI=\alpha+\delta-\pi\implies FI=\cot(\alpha+\delta)\implies FG^2=FA\cdot FB=[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]$
$GI=\tan\angle GEI=FG-FI$
$HI=\tan\angle HEI=FG+FI$
$$\tan\angle GEH=\tan(\angle GEI+\angle HEI)=\frac{2FG}{1-FG^2+FI^2}$$
$$\implies\frac14\tan^2\angle GEH=\frac{FG^2}{(1-FG^2+FI^2)^2}=\frac{[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]}{(1-[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]+\cot^2(\alpha+\delta))^2}$$
将$γ=-(α+β+δ)$代入\eqref{1}, 要证明的是\begin{equation}\label2
-{\sin(α) \sin(β) \sin(α+β+δ) \sin(δ)\over\sin^2(β + δ)}=\frac{[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]}{(1-[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]+\cot^2(\alpha+\delta))^2}\end{equation}
  1. In[]:= ((Cot[\[Alpha]+\[Delta]]-Cot[\[Alpha]])(Cot[\[Alpha]+\[Delta]]+Cot[\[Beta]]))/(1-(Cot[\[Alpha]+\[Delta]]-Cot[\[Alpha]])(Cot[\[Alpha]+\[Delta]]+Cot[\[Beta]])+Cot[\[Alpha]+\[Delta]]^2)^2+(Sin[\[Alpha]]Sin[\[Beta]]Sin[\[Alpha]+\[Beta]+\[Delta]]Sin[\[Delta]])/Sin[\[Beta]+\[Delta]]^2//FullSimplify
  2. Out[]= 0
Copy the Code
FullSimplify发现恒等式成立这样就证明了3#.
问题:如何手工化简\eqref{2}?

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

 Author| hbghlyj Posted at 2023-2-18 19:14:56

手工化简\eqref{2}

代入$\begin{aligned}\cot(\alpha+\delta)-\cot\alpha&=-\frac{\sin(\delta)}{\sin(\alpha+\delta)\sin(\alpha)}\\\cot(\alpha+\delta)+\cot\beta&=\frac{\sin(α+β+δ)}{\sin(α+δ)\sin(β)}\end{aligned}$ 从\eqref{2}两边消去$-\sin(α+β+δ) \sin(δ)$
\[{\sin(α) \sin(β) \over\sin^2(β + δ)}=\frac{\frac1{\sin(\alpha+\delta)\sin(\alpha)}\cdot\frac1{\sin(α+δ)\sin(β)}}{(1-[\cot(\alpha+\delta)-\cot\alpha][\cot(\alpha+\delta)+\cot\beta]+\cot^2(\alpha+\delta))^2}\]
即\[{\sin^2(α)\sin^2(β)\sin(α+δ)^2\over\sin^2(β+δ)}=\frac1{[1+\cot(α+δ)(\cot(α)-\cot(β))+\cot(α)\cot(β)]^2}\]
只需证明\begin{equation}\sin(α) \sin(β) \sin(α + δ) [1 + \cot(α + δ) (\cot(α) - \cot(β))+\cot(α) \cot(β)]=\sin(β + δ)\end{equation}把$\sin(α) \sin(β)$乘进去\[\sin(α + δ) [\cos(α-β)-\cot(α + δ) \sin(α-β)]=\sin(β + δ)\]把$\sin(α + δ)$乘进去\[\sin(α + δ) \cos(α-β)-\cos(α + δ) \sin(α-β)=\sin((α + δ)-(α-β))=\sin(β + δ)\]证毕.

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

 Author| hbghlyj Posted at 2024-9-27 20:42:07

手机版Mobile version|Leisure Math Forum

2025-4-22 11:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list