|
Author |
hbghlyj
Posted at 2023-2-18 17:01:12

首先$CD$是多余的, 擦掉$CD$只保留$EF$. 直线$AB,AE,BE,EF$之间的夹角都能由$\alpha,\beta,\gamma,\delta$表示.
作$EI\perp AB$, 设$EI=1$, 则$AI=\cot(\pi-\alpha)=-\cot(\alpha),BI=\cot(\beta)$.
$\angle EFI=\alpha+\delta-\pi\implies FI=\cot(\alpha+\delta)\implies FG^2=FA\cdot FB=[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]$
$GI=\tan\angle GEI=FG-FI$
$HI=\tan\angle HEI=FG+FI$
$$\tan\angle GEH=\tan(\angle GEI+\angle HEI)=\frac{2FG}{1-FG^2+FI^2}$$
$$\implies\frac14\tan^2\angle GEH=\frac{FG^2}{(1-FG^2+FI^2)^2}=\frac{[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]}{(1-[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]+\cot^2(\alpha+\delta))^2}$$
将$γ=-(α+β+δ)$代入\eqref{1}, 要证明的是\begin{equation}\label2
-{\sin(α) \sin(β) \sin(α+β+δ) \sin(δ)\over\sin^2(β + δ)}=\frac{[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]}{(1-[\cot(\alpha+\delta)-\cot(\alpha)][\cot(\alpha+\delta)+\cot(\beta)]+\cot^2(\alpha+\delta))^2}\end{equation}
- In[]:= ((Cot[\[Alpha]+\[Delta]]-Cot[\[Alpha]])(Cot[\[Alpha]+\[Delta]]+Cot[\[Beta]]))/(1-(Cot[\[Alpha]+\[Delta]]-Cot[\[Alpha]])(Cot[\[Alpha]+\[Delta]]+Cot[\[Beta]])+Cot[\[Alpha]+\[Delta]]^2)^2+(Sin[\[Alpha]]Sin[\[Beta]]Sin[\[Alpha]+\[Beta]+\[Delta]]Sin[\[Delta]])/Sin[\[Beta]+\[Delta]]^2//FullSimplify
- Out[]= 0
Copy the CodeFullSimplify 发现恒等式成立 这样就证明了3#.
问题:如何手工化简\eqref{2}? |
|