Forgot password
 Register account
View 138|Reply 0

从分部积分的存在推断积分的存在

[Copy link]

3226

Threads

7843

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-2-23 22:22 |Read mode
$\abs{\cos x\over x^2}\leqslant\frac1{x^2}\implies \frac{\cos x}{x^{2}} $在$[1,\infty)$上Lebesgue可积
分部积分$$\int_{1}^{a} \frac{\sin x}{x} \rmd x=\cos 1-\frac{\cos a}{a}-\int_{1}^{a} \frac{\cos x}{x^{2}} \rmd x$$
让$a$趋于无穷大, 推断$\int_{1}^\infty \frac{\sin x}{x} \rmd x$存在. 事实上$\frac{\sin x}{x}$在$[1,\infty)$上Lebesgue不可积.
所以对于Lebesgue积分, 无法从分部积分的存在推断积分的存在

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 09:42 GMT+8

Powered by Discuz!

Processed in 0.012910 seconds, 22 queries