Forgot password?
 Create new account
View 114|Reply 0

从分部积分的存在推断积分的存在

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-2-23 22:22:09 |Read mode
$\abs{\cos x\over x^2}\leqslant\frac1{x^2}\implies \frac{\cos x}{x^{2}} $在$[1,\infty)$上Lebesgue可积
分部积分$$\int_{1}^{a} \frac{\sin x}{x} \rmd x=\cos 1-\frac{\cos a}{a}-\int_{1}^{a} \frac{\cos x}{x^{2}} \rmd x$$
让$a$趋于无穷大, 推断$\int_{1}^\infty \frac{\sin x}{x} \rmd x$存在. 事实上$\frac{\sin x}{x}$在$[1,\infty)$上Lebesgue不可积.
所以对于Lebesgue积分, 无法从分部积分的存在推断积分的存在

手机版Mobile version|Leisure Math Forum

2025-4-21 14:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list