Forgot password?
 Register account
View 348|Reply 12

[几何] 求一个凸六边形面积的最大值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2023-3-1 16:46 |Read mode
30101.jpg

求解答过程。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-1 17:39
因为$CD=DE,\angle COD=\angle DOE$
所以$C,E$关于$OD$对称(此时$BC>2\sqrt2$), 或者$CDOE$共圆(此时$\triangle CDE$为正三角形)

没法画出指定的图😥
New Text Document.png

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2023-3-1 21:06
由余弦定理,有$ a^2+b^2-ab=1 $等六式,相加得$$2\sum_{cyc}^\ a^2-\sum_{cyc}^\ ab=84\geqslant \sum_{cyc}^\ ab$$
故\[ S=\sum_{cyc}^\ \frac{1}{2}ab\sin 60\du =\frac{\sqrt{3}}{4}\sum_{cyc}^\ ab\leqslant 21\sqrt{3} \]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-3-1 21:10
Ly-lie 发表于 2023-3-1 21:06
由余弦定理,有$ a^2+b^2-ab=1 $等六式,相加得$$2\sum_{cyc}^\ a^2-\sum_{cyc}^\ ab=84\geqslant \sum_{cy ...
这个能取等嘛?🤔

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2023-3-1 21:13
kuing 发表于 2023-3-1 21:10
这个能取等嘛?🤔
应该取不了,我再想想🥵

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-3-1 21:18
hbghlyj 发表于 2023-3-1 17:39
没法画出指定的图😥
确实,不存在题中图形的数值,是为错题。

在 mma 用如下命令:
  1. NSolve[{a^2 - a b + b^2 == 1, b^2 - b c + c^2 == 8,
  2.    c^2 - c d + d^2 == 25, d^2 - d e + e^2 == 25,
  3.    e^2 - e f + f^2 == 16, a^2 - a f + f^2 == 9}, {a, b, c, d, e, f}] // MatrixForm
Copy the Code
结果没一个是实数。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-2 01:50
kuing 发表于 2023-3-1 14:18
结果没一个是实数。
也可以限定domain为Reals, 输出{}
  1. NSolve[{a^2-a b+b^2==1,b^2-b c+c^2==8,c^2-c d+d^2==25,d^2-d e+e^2==25,e^2-e f+f^2==16,a^2-a f+f^2==9},{a,b,c,d,e,f},Reals]
Copy the Code

Comment

我的 mma7.0 对此无效😥  Posted 2023-3-2 02:45
羡慕 mma7.0  Posted 2023-3-2 03:01

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-2 01:57
限定过多, 导致无解. 例如把$CD=5,DE=5$改为$CD=DE$, 可以求面积的最大值

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2023-3-2 08:19
那么,这个问题:
(如1#图)已知凸六边形的对角线$AD,BE,CF$交于点$O$,且两两夹角都是$60^o,AB=a,BC=b,CD=c,DE=d,EF=e,FA=f$。若凸六边形面积$S$有最大值,那么其边长要满足什么条件?

Comment

问题:若存在凸六边形,那么其边长要满足什么条件?  Posted 2023-3-2 08:52

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2023-3-2 11:26
hbghlyj 发表于 2023-3-2 01:57
限定过多, 导致无解. 例如把$CD=5,DE=5$改为$CD=DE$, 可以求面积的最大值
这个如何求最值?麻烦写个过程吧

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit