Forgot password?
 Register account
View 192|Reply 2

[几何] 三角形和一点 仿射不变量

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-2 05:44 |Read mode
反纯几何

任意$\triangle ABC$和一点$P$, 证明$\frac{\cot \angle \mathrm{BAD}-\cot \angle \mathrm{ADE}}{\cot \angle \mathrm{CAD}-\cot \angle \mathrm{ADF}}$是仿射不变量.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-2 08:55
$DE\cap AB=X,\cot\angle BAD-\cot\angle ADE=\frac{AD}{d(X,AD)}$
$DF\cap AC=Y,\cot\angle CAD-\cot\angle ADF=\frac{AD}{d(Y,AD)}$

$d(X,AD)\over d(Y,AD)$是仿射不变量

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-10-13 22:41

这个仿射不变量相等的两组点可以互变吗?

任意$\triangle A_1B_1C_1$和一点$P_1$,
任意$\triangle A_2B_2C_2$和一点$P_2$,
若$$\frac{\cot \angle B_1A_1D_1-\cot \angle  A_1D_1E_1}{\cot \angle C_1A_1D_1-\cot \angle A_1D_1F_1}=\frac{\cot \angle B_2A_2D_2-\cot \angle  A_2D_2E_2}{\cot \angle C_2A_2D_2-\cot \angle A_2D_2F_2}$$是否存在仿射变换 $f$ 使得 $f(A_1)=A_2,f(B_1)=B_2,f(C_1)=C_2,f(P_1)=P_2$

Mobile version|Discuz Math Forum

2025-5-31 11:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit