|
original poster
hbghlyj
posted 2023-3-28 16:53
$\sup_{x\in(0,1]}\frac{\log(1 - x)}x=-1$ at $x=0$
$\inf_{y\in(0,1]}\frac{(1-y)\log(1 - y)}y=-1$ at $y=0$
$$\frac{(1-y)\log(1 - y)}y<-1<\frac{\log(1 - x)}x$$
即
$$\frac{\log(1 - x)}{\log(1 - y)}>\frac{x(1-y)}{y}$$
把$x,y$交换, 取倒数:
$$\frac{\log(1 - x)}{\log(1 - y)}<\frac{x}{y(1-x)}$$ |
|