Forgot password?
 Register account
View 138|Reply 0

[几何] 旁切圆半径是其他两个旁切圆半径和内切圆半径之和

[Copy link]

3156

Threads

7932

Posts

45

Reputation

Show all posts

hbghlyj posted 2023-3-4 06:54 |Read mode
在$\triangle ABC$中,若$A$-旁切圆半径是其他两个旁切圆半径和内切圆半径之和,则$A=\frac\pi2$
math.stackexchange.com/questions/1918857/
根据此帖
$$r_1-r=4R\sin^2\frac A2$$
类似有
$$r_2+r_3=\cos \left(\frac A{2}\right) \sin \left(\frac B{2}\right) \cos \left(\frac C{2}\right)+\cos \left(\frac A{2}\right) \cos \left(\frac B{2}\right) \sin \left(\frac C{2}\right)=4R\cos^2\frac A2$$因此
$$r_1-r=r_2+r_3\Leftrightarrow\cos^2\frac A2=\sin^2\frac A2\Leftrightarrow A=\frac\pi2$$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 10:32 GMT+8

Powered by Discuz!

Processed in 0.014474 second(s), 21 queries

× Quick Reply To Top Edit