Forgot password?
 Register account
View 238|Reply 1

[不等式] $a^2/x+b^2/y+c^2/z=0$求证$xyz<0$

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-6 18:30 |Read mode
George Chrystal - Algebra, An elementary textbook. For Higher Classes of Secondary Schools and for Colleges. Volume 2 Page 52

(41.) 已知 $b+c>a,c+a>b,a+b>c,x+y+z>0,a^2/x+b^2/y+c^2/z=0$, 求证$xyz<0$

验证:
In[]:= FindInstance[{b+c>a,c+a>b,a+b>c,x+y+z>0,a^2/x+b^2/y+c^2/z==0,x y z>=0},{x,y,z,a,b,c}]
Out[]= {}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-6 18:35
证明:
由$b+c>a,c+a>b$得$c>0$, 同理$a,b>0$.
因为$\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=0$, 不能$x,y,z>0$. 而$x+y+z>0$, 所以$x,y,z$中只有2个$>0$或1个$>0$.
若$x,y,z$中只有1个$>0$, 设$x>0>y,z$.
Titu's Lemma 得$\frac{(b+c)}{x}>\frac{a^2}{x}=\frac{b^2}{-y}+\frac{c^2}{-z}\ge\frac{(b+c)^2}{-y-z}=\frac{(b+c)^2}x$矛盾.
因此$x,y,z$中只有2个$>0\implies xyz<0$.

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit