|
Last edited by hbghlyj 2025-5-4 08:01$n^2(n≥2)$ 个不同的实数, 证明存在一个全排列 $a_1,⋯,a_{n^2}$, 使得
\begin{cases} a_1 x_1+ a_2 x_2+ \cdots + a_nx_n =0\\a_{n+1} x_1+ a_{n+2} x_2+ \cdots + a_{2n}x_n=0\\ \quad\vdots \\ a_{n^2-n+1} x_1+ a_{n^2-n+2} x_2+ \cdots + a_{n^2}x_n=0\end{cases}有非平凡解.
|
|