Forgot password?
 Register account
View 260|Reply 2

[组合] 将$r$个不同东西分给$n+p$人使其中某$n$人每人至少分到1个

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-7 03:05 |Read mode
George Chrystal - Algebra_ An elementary textbook, Vol 2 Page 33 Exercise Ⅲ. 27
The number of ways in which $r$ different things cen be distributed among $n+p$ persons so that certain $n$ of those persons may each have one at least is
$$
g_r=(n+p)^r-n(n+p-1)^r+\frac{n(n-1)}{2 !}(n+p-2)^r-\ldots
$$
Hence prove thet
$$
S_1=S_2=\ldots = S_{n-1}=0, \quad S_n=n !, \quad S_{n+1}=\left(\frac{n}{2}+p\right)(n+1) ! .
$$
(Wolstenholme.)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-3-7 04:34
英文太多没细看,但当看到那串 S 的结果时,我想起了这帖:
forum.php?mod=redirect&goto=findpost& … d=6540&pid=33651
不知有没有联系。

13

Threads

907

Posts

110K

Credits

Credits
12299

Show all posts

色k Posted 2023-3-7 05:03 From mobile phone
我好像看懂了那个 $g_r$ 用的是容斥原理?

Mobile version|Discuz Math Forum

2025-5-31 11:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit