Forgot password?
 Register account
View 249|Reply 3

[不等式] x,y在单位圆盘内,求u/v的范围

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-9 02:27 |Read mode
$x^2+y^2\le1$,
$(u,v)$是方程组$\cases{x^2+u (y+1)=y^2+v (x+1)\\u^2+u (x+1)=v^2-v (y+1)}$的解, 且 $u>0,v>0$,
求$u\over v$的范围

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-9 02:44
Last edited by hbghlyj 2023-3-9 15:37解出$u,v$
  1. sol = Assuming[Element[{x, y}, Disk[]],
  2.   Solve[{x^2 + u (y + 1) == y^2 + v (x + 1),
  3.     u^2 + u (x + 1) == v^2 - v (y + 1), u > 0, v > 0}, {u, v}]]
Copy the Code
发现只有1组解.
  1. FullSimplify[u/v/.sol[[1]]]
Copy the Code
\[\small\frac uv=-\frac{-\sqrt{5 x^4-4 x^3 (2 y+1)-2 x^2 y (3 y+2)+4 x (y (y (2 y+3)+2)+2)+(y (y+2)+2) (y (5 y+2)+2)}-x (x+2)+y (y+2)}{2 \left(-x^2+x y+x+y^2+y+1\right)}\]
令$f(x,y)=\frac uv$
  1. f = -((-x (2 + x) +
  2.        y (2 + y) - \[Sqrt](5 x^4 - 4 x^3 (1 + 2 y) -
  3.           2 x^2 y (2 + 3 y) + (2 + y (2 + y)) (2 + y (2 + 5 y)) +
  4.           4 x (2 + y (2 + y (3 + 2 y)))))/(2 (1 + x - x^2 + y + x y +
  5.          y^2)));
  6. ArgMax[{f, x^2 + y^2 <= 1}, {x, y}] // RootReduce
  7. ArgMin[{f, x^2 + y^2 <= 1}, {x, y}] // RootReduce
Copy the Code
$f(x,y),x^2+y^2\le1$ 当 $(x,y)=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$取得最大值$2+\sqrt{6}+\sqrt{5+2 \sqrt{6}}$,
当 $(x,y)=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$取得最小值$2-\sqrt{6}-\sqrt{5-2 \sqrt{6}}$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-9 17:15
  1. Limit[f, {x, y} -> {0, 0}]
Copy the Code
输出1. 即: 当$(x,y)\to(0,0)$时$\frac uv\to1$
能否从方程组直接得出?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-9 22:36
hbghlyj 发表于 2023-3-9 10:15
输出1. 即: 当$(x,y)\to(0,0)$时$\frac uv\to1$
能否从方程组直接得出?
把$u$换为$f\cdot v$, 消去$v$得
  1. Eliminate[{x^2 + u (y + 1) == y^2 + v (x + 1), u^2 + u (x + 1) == v^2 - v (y + 1)} /. u -> f v, v]
Copy the Code
\[\small0=(x-y) (x+y) \left(1-f^2+x+2 f x-f^2 x-x^2+f x^2+f^2 x^2+y-2 f y-f^2 y+x y-f^2 x y+y^2-f y^2-f^2 y^2\right)\]在最后一个因子令$x=y=0$得$1-f^2=0$(因为$u,v>0$,有$f>0$)即$f=1$

看来2#做麻烦了, 不要解出$u,v$而应消去它们

Mobile version|Discuz Math Forum

2025-5-31 11:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit