|
Author |
hbghlyj
Posted 2023-3-9 02:44
Last edited by hbghlyj 2023-3-9 15:37解出$u,v$- sol = Assuming[Element[{x, y}, Disk[]],
- Solve[{x^2 + u (y + 1) == y^2 + v (x + 1),
- u^2 + u (x + 1) == v^2 - v (y + 1), u > 0, v > 0}, {u, v}]]
Copy the Code 发现只有1组解.
- FullSimplify[u/v/.sol[[1]]]
Copy the Code \[\small\frac uv=-\frac{-\sqrt{5 x^4-4 x^3 (2 y+1)-2 x^2 y (3 y+2)+4 x (y (y (2 y+3)+2)+2)+(y (y+2)+2) (y (5 y+2)+2)}-x (x+2)+y (y+2)}{2 \left(-x^2+x y+x+y^2+y+1\right)}\]
令$f(x,y)=\frac uv$
- f = -((-x (2 + x) +
- y (2 + y) - \[Sqrt](5 x^4 - 4 x^3 (1 + 2 y) -
- 2 x^2 y (2 + 3 y) + (2 + y (2 + y)) (2 + y (2 + 5 y)) +
- 4 x (2 + y (2 + y (3 + 2 y)))))/(2 (1 + x - x^2 + y + x y +
- y^2)));
- ArgMax[{f, x^2 + y^2 <= 1}, {x, y}] // RootReduce
- ArgMin[{f, x^2 + y^2 <= 1}, {x, y}] // RootReduce
Copy the Code $f(x,y),x^2+y^2\le1$ 当 $(x,y)=\left(\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$取得最大值$2+\sqrt{6}+\sqrt{5+2 \sqrt{6}}$,
当 $(x,y)=\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$取得最小值$2-\sqrt{6}-\sqrt{5-2 \sqrt{6}}$. |
|