Forgot password?
 Register account
View 141|Reply 0

[几何] 三棱柱的横截面

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2023-3-9 21:03 |Read mode
visualprobs page125
定理:如果$P$是足够高的三棱柱,$T$是任意三角形,则存在一个平面,其与$P$的截面与$T$相似。
我们将证明以下定理:
设 $ABC$ 和 $PQR$ 是 x-y 平面中的任意三角形,$K$ 是向量 [0,0,1],$s,t$ 是任意实数。然后可以选择$s$和$t$,使得顶点$C,(A+tK),(B+sK)$的三角形与三角形$PQR$相似。
证明:该定理断言给定任何其他三角形 $PQR$,我们可以选择 $t$ 和 $s$,使得三角形 $(A+tK)C(B+sK)$ 与 $PQR$ 相似。这两个三角形相似(“边角边”)。
放置三角形 $ABC$ 使得 $C=[0,0,0], B=[1,0,0],$ 和 $A=[a,b,0]$ 且 $a,b$ 为正。放置三角形 $PQR$ 使得 $P=A, Q=C,$ 和 $R=[p,q,r]$ 且 $p,r$ 为正。然后我们要选择 $s,t$ 使得 $\cos\angle((A + t K) C (B + s K))=\cos\angle QPR$ 且向量 $A+tK $ 和 $B+tK$ 的长度 与 $QP$ 和 $RP$(三角形 QPR 的边)成正比,比例为 $k$。我们已将 $C$ 和 $P$ 设置为原点,以便计算两个向量之间夹角的余弦:它们的点积除以它们的长度的乘积。然后我们有三个等式:
\begin{gather*}
\frac{\operatorname{dotprod}(A+t K, B+t K)}{\operatorname{length}(A+t K) \operatorname{length}(B+s K)}=\frac{\operatorname{dotprod}(Q, R)}{\operatorname{length}(Q) \operatorname{length}(R)}\\
(A+tK)=k \operatorname{length}(Q)\\
\operatorname{length}(B+sK)=k \operatorname{length}(R)
\end{gather*}
在第一个方程式的分母中使用第二个方程式并知道 $Q$ 和 $R$ 的点积是 $p$
代入三个方程式,我们有:\begin{array}{l}\operatorname{dotprod}(A+t K, B+s K)=k^{2} p \\ \operatorname{length}(A+t K)=k \\ \operatorname{length}(B+s K)=k^{2}\left(p^{2}+q^{2}\right)\end{array}将这些放入 Maple(假设 p、q、s 和 t 是实数很方便。)
> p:=’p’:q:=’q’:s:=’s’: t:=’t’:a:=’a’: b:=’b’:
assume(p,real,q,real,s,real,t,real,a,real,b,real):
interface(showassumed=0);
1
> A:=[a,b,0]: B:=[1,0,0]: C:=[0,0,0]:K:=[0,0,1]:
P:=[0,0,0]:Q:=[1,0,0]:R:=[p,q,0]:
eq1 := linalg[dotprod](A + t*K,B + s*K) = k^2*p;
> eq2 := linalg[dotprod](A + t*K,A + t*K) = k^2;
eq3 := linalg[dotprod](B + s*K,B + s*K) = k^2*(p^2 + q^2);
\begin{array}{c}e q 1:=a+t s=k^{2} p \\ e q 2:=a^{2}+b^{2}+t^{2}=k^{2} \\ e q 3:=1+s^{2}=k^{2}\left(p^{2}+q^{2}\right)\end{array}使用 eq2 从第一个和第三个方程中消去 $k^2$。
> EQ1:= lhs(eq1)=lhs(eq2)*p;
EQ2:=lhs(eq3)=lhs(eq2)*(p^2+q^2);
\begin{array}{c}E Q 1:=a+t s=\left(a^{2}+b^{2}+t^{2}\right) p \\ E Q 2:=1+s^{2}=\left(a^{2}+b^{2}+t^{2}\right)\left(p^{2}+q^{2}\right)\end{array}我们可以通过以下方式求解满足这些方程的 s 和 t 的值:
> sol:=solve({EQ1,EQ2},{s,t});
\begin{array}{l}s o l:=\left\{s=\frac{-a+p a^{2}+p b^{2}+p \% 1^{2}}{\% 1}, t=\% 1\right\} \\ \% 1:=\operatorname{RootOf}\left(-Z^{4} q^{2}+\left(-1-a^{2} p^{2}+2 a p-b^{2} p^{2}+a^{2} q^{2}+b^{2} q^{2}\right)-Z^{2}-p^{2} b^{4}-a^{2}\right. \\ \left.+2 p a^{3}+2 a p b^{2}-p^{2} a^{4}-2 p^{2} a^{2} b^{2}\right)\end{array}这告诉我们,如果 t 的至少一个值是非零实数,那么就有一个解。
> tsol:=(sol[2]);
\begin{array}{l}t s o l:=t=\operatorname{RootOf}\left(-Z^{4} q^{2}+\left(-1-a^{2} p^{2}+2 a p-b^{2} p^{2}+a^{2} q^{2}+b^{2} q^{2}\right)-Z^{2}-p^{2} b^{4}-a^{2}\right. \\ \left.+2 p a^{3}+2 a p b^{2}-p^{2} a^{4}-2 p^{2} a^{2} b^{2}\right)\end{array}我们看到 tsol 是 $Z^2$ 的二次多项式的根。我们可以用 $\sqrt X$ 代替 $Z$ 来化为 $X$ 的二次方程。
> p2:=op(rhs(subs(_Z=sqrt(X),tsol)));
\begin{array}{l}p^{2}:=X^{2} q^{2}+\left(-1-a^{2} p^{2}+2 a p-b^{2} p^{2}+a^{2} q^{2}+b^{2} q^{2}\right) X-p^{2} b^{4}-a^{2}+2 p a^{3}+2 a p b^{2} \\ -p^{2} a^{4}-2 p^{2} a^{2} b^{2}\end{array}因此,为了使 t 有一个非零的正值,我们必须找到 p2 的一个正根。
Since the lead coefficient of $\rm p2$ is the positive number $256q^2$, its graph is a upward-opening parabola which crosses the x-axis twice if $\mathrm{p2}(z)$ is negative for some value of $z$. (The ”twice” is important since we need a non-zero root): if there are two roots one of them must be non-zero. In fact ”const”, the constant term of $\rm p2$ is the negative of a square.
> const:=subs(X=0,p2);
const:=factor(const);
\begin{array}{c}\text { const }:=-p^{2} b^{4}-a^{2}+2 p a^{3}+2 a p b^{2}-p^{2} a^{4}-2 p^{2} a^{2} b^{2} \\ \text { const }:=-\left(-a+p a^{2}+p b^{2}\right)^{2}\end{array}If conts is nonzero, the polynomial will have two real roots. We can easily find when the constant is zero by solving
> solve(const,p);
$$\frac{a}{a^{2}+b^{2}}, \frac{a}{a^{2}+b^{2}}$$Thus const is zero if and only if $p=\frac{a}{a^2+b^2}$. and we must deal with this possibility. If it happens then we can incorporate this into the original equations and solve again.
> EQ1a:=subs(p=a/(a^2+b^2),EQ1);
EQ2a:=subs(p=a/(a^2+b^2),EQ2);
SLNS:=solve({EQ1a,EQ2a},{s,t});
\begin{aligned}
& \text { SLNS }:=\left\{s=\operatorname{RootOf}\left(\left(a^2+b^2\right)-Z^2-q^2 a^4+b^2-2 q^2 a^2 b^2-q^2 b^4\right), t=0\right\},\\
&\left\{s=\frac{\operatorname{RootOf}\left(\left(a^2+b^2\right)-Z^2+q^2 a^4+2 q^2 a^2 b^2+q^2 b^4-b^2, \text { label }={ }_{-L} L 3\right) a}{\left(a^2+b^2\right) q}, \right.\\
& \left.t=\frac{\operatorname{RootOf}\left(\left(a^2+b^2\right)-Z^2+q^2 a^4+2 q^2 a^2 b^2+q^2 b^4-b^2, \text { label }={ }_{-L} L 3\right)}{q}\right\}\end{aligned}
The problem is to see that one of these posibilities is a pair of real numbers. We will have a solution with $\mathrm{t}=0$ if there is a real root to the quadratic
> q1:= (a^2+b^2)*_Z^2-q^2*a^4-2*q^2*b^2*a^2-q^2*b^4+b^2;
\[q 1:=\left(a^2+b^2\right)-Z^2-q^2 a^4+b^2-2 q^2 a^2 b^2-q^2 b^4 \]Or there will be a solution if the other quadratic has real roots.
> q2:=(a^2+b^2)*_Z^2+q^2*a^4+2*q^2*b^2*a^2+q^2*b^4-b^2;
\[q2:=\left(a^2+b^2\right)-Z^2+q^2 a^4+2 q^2 a^2 b^2+q^2 b^4-b^2 \]A quadratic has real roots if and only if its discriminant is not-negative so we must see that the discriminnant of one of $\rm q1, q2$ is non-negative. In this
> discrim(q1,_Z);
discrim(q2,_Z);
\begin{array}{c}4\left(a^{2}+b^{2}\right)\left(q^{2} a^{4}+2 q^{2} a^{2} b^{2}+q^{2} b^{4}-b^{2}\right) \\ -4\left(a^{2}+b^{2}\right)\left(q^{2} a^{4}+2 q^{2} a^{2} b^{2}+q^{2} b^{4}-b^{2}\right)\end{array}Since each of these discriminants is the negative of the other, one of these quadratics is guaranteed to have real roots. Hence the problem can be solved, and this proves the theorem. QED.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:52 GMT+8

Powered by Discuz!

Processed in 0.017175 second(s), 21 queries

× Quick Reply To Top Edit