Forgot password?
 Register account
View 210|Reply 5

[几何] 视角最大化

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-13 17:57 |Read mode
Regiomontanus' angle maximization problem

Solution by calculus

求 $x$ 最大化 $\theta$ $$\tan\theta={\frac {{\frac {b}{x}}-{\frac {a}{x}}}{1+{\frac {b}{x}}\cdot {\frac {a}{x}}}}=(b-a){\frac {x}{x^{2}+ab}}.$$ $b-a$是常数,所以要最大化$\frac {x}{x^{2}+ab}$ $$ {\rmd \over\rmd x}\left({\frac {x}{x^{2}+ab}}\right)={\frac {ab-x^{2}}{(x^{2}+ab)^{2}}}\qquad {\begin{cases}{}>0&{\text{if }}0\leq x<{\sqrt {ab\,{}}},\\{}=0&{\text{if }}x={\sqrt {ab\,{}}},\\{}<0&{\text{if }}x>{\sqrt {ab\,{}}}.\end{cases}}$$ 因此 $\theta$ 随着 $x$ 从 $0$ 到 $\sqrt{ab}$ 而增加,随着 $x$ 从 $\sqrt{ab}$ 增加而减小。因此,当 $x = \sqrt{ab}$ 时,角度最大。

b-a a x θ x θ

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-13 18:16
当线段固定在$(0,±L)$时, 由1#得, 视角最大点$P(x,y)$的轨迹是等轴双曲线$x^2=(y+L)(y-L)$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-3-13 18:19
初中问题啊,搞什么求导……
利用圆周角相等可知,当外接圆与 x 轴相切时视角最大,然后由切割线定理立得 x 的位置。

Comment

又见1#引用的Wikipedia链接中的Solution by elementary geometry  Posted 2023-3-13 18:26

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-13 18:24
求二阶导可知 $x=\sqrt{3ab}$ 时,$\theta$ 随 $x$ 变化得最慢$${\rmd^2 \over\rmd x^2}\left({\frac {x}{x^{2}+ab}}\right)=\frac{2 x \left(x^2-3 a b\right)}{\left(a b+x^2\right)^3}$$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-13 18:36

线段推广为椭圆

h x θ x θ

Mobile version|Discuz Math Forum

2025-5-31 11:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit