$\mathbb R^3$中, 关于单位向量$v$旋转$θ$记为$R(v,θ)$, 问$R(v_3,θ)R(v_2,θ)R(v_1,θ)=\text{Id}$的条件?
设$θ_1,θ_2,θ_3\in(-\pi,\pi]$,
当$v_1=(1,0,0),v_2=(0,1,0),v_3=(0,0,1)$时,
- Reduce[RotationMatrix[θ3,{0,0,1}].RotationMatrix[θ2,{0,1,0}].RotationMatrix[θ1,{1,0,0}]==IdentityMatrix[3],{θ1,θ2,θ3}]
Copy the Code $$θ_1=θ_2=θ_3=0\lorθ_1=θ_2=θ_3=\pi$$
当$v_1=(\frac1{\sqrt3},\frac1{\sqrt3},\frac1{\sqrt3}),v_2=(0,1,0),v_3=(0,0,1)$时,
- Reduce[RotationMatrix[θ3,{0,0,1}].RotationMatrix[θ2,{0,1,0}].RotationMatrix[θ1,{1,1,1}]==IdentityMatrix[3],{θ1,θ2,θ3}]
Copy the Code $$θ_1=θ_2=θ_3=0\lor\left(θ_1=\frac{2\pi}3\wedgeθ_2=θ_3=-\frac\pi2\right)$$ |