Forgot password?
 Create new account
View 116|Reply 1

[几何] 2D仿射变换的复数公式

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2023-3-13 22:41:23 |Read mode
2D仿射变换\[
\begin{bmatrix}x'\\y'\\1\end{bmatrix} = \begin{bmatrix}a&c&e\\b&d&f\\0&0&1\end{bmatrix}\begin{bmatrix}x\\y\\1\end{bmatrix}\]可写成$$z' = c_1 z + c_2\bar{z} + c_3$$
其中 $z = x+iy,\ c_1 =\frac{a+d}{2} + i\frac{b-c}{2},\ c_2 = \frac{a-d}{2} + i\frac{b+c}{2},\ c_3 = e + if$.
证明
\begin{align*}
c_1z+c_2\bar{z}+c_3 &=\left( \frac{a+d}{2} +i \frac{b-c}2\right)\cdot \left(x+iy \right) + \left( \frac{a-d}{2} +i \frac{b+c}2\right)\cdot \left(x-iy \right)+c_3 \\
&= ax+idy +ibx+cy+c_3 \\
&= ax+cy + i(bx+dy)+e+if \\
&=ax+cy+e+i(bx+dy+f)\\
&= x'+iy'
\end{align*}

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

 Author| hbghlyj Posted at 2023-3-13 22:51:48

在计算机图形学的应用

Learning PostScript by Doing 6 Coordinate Transformations
如果一个点在坐标系中的坐标是 $(x, y)$,该坐标系围绕点 $(a, b)$ 逆时针旋转角度 $θ$,则其在当前页面中的坐标 $(x_\text{page}, y_\text{page})$ 为$$\left(\begin{array}{c}x_{\text {page}} \\ y_{\text {page}} \\ 1\end{array}\right)=\left(\begin{array}{ccc}\cos \theta & -\sin \theta & a(1-\cos \theta)+b \sin \theta \\ \sin \theta & \cos \theta & b(1-\cos \theta)-a \sin \theta \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ 1\end{array}\right)$$也写成$$z'=e^{i\theta}(z-w)+w$$其中$w=a+bi$

手机版Mobile version|Leisure Math Forum

2025-4-21 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list