Forgot password?
 Register account
View 288|Reply 4

[几何] bracket algebra

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-13 23:16 |Read mode
Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry, Springer, Jürgen Richter-Gebert (2011)
每个点都由 3D 齐次坐标表示。三点 $P, Q, R$ 共线,当且仅当由它们的坐标构成的 $3×3$ 矩阵的行列式为零。我们将此行列式缩写为 $[PQR]$。
Automated short proof generation for projective geometric theorems with Cayley and bracket algebras: II. Conic geometry
PDF

根据帕斯卡定理,当且仅当交点 $12∩56$、$13∩45$、$24∩36$ 共线时,1、2、3、4、5、6 六个点在同一条圆锥曲线上,称为conconic。展开$[(12∧56)(13∧45)(24∧36)]=0$,我们得到\[\text{conic}(123456)=[135][245][126][346]−[125][345][136][246]=0.\]
Proposition 2.1 对于平面上的任意六个点 $1,…,6$,表达式 $\text{conic}(123456)$ 关于这六个点是反对称的。此外,对于平面中的任意点 $6'$,\[[126'][346']\text{conic}(123456)+[125][345]\text{conic}(123466')=[126][346]\text{conic}(123456').\]显然,$\text{conic}(123456)$ 相对于三对 14、23、56 中的任何一个是反对称的。我们只需要证明相对于两对 12、15 中的任何一个的反对称。这可以通过收缩来验证:\(\text{conic}(123456)+\text{conic}(213456)=[126][346]([135][245]−[235][145])−[125][345]([136][246]−[236][146])\xlongequal{\text{contract}}0,\)
\(\text{conic}(123456)+\text{conic}(523416)=[135][346]([245][126]+[124][256])−[125][246]([345][136]+[134][356])\xlongequal{\text{contract}}0.\)
  \(_□\)

Comment

这是用啥转的码?怎么那么多 \text ,也不合并一下?  Posted 2023-3-14 00:37
pandoc从HTML5+MathML转到LaTeX😥  Posted 2023-3-14 00:48

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-13 23:27
Example 3.1
自由点: 1,2,3,4,5.
交点: 6=34∩15, 7=12345∩26, 8=13∩45, 9=14∩35, 0=25∩17.
结论: 8, 9, 0 共线.
1-s2.0-S074771710300066X-gr1[1].gif
证明:
1-s2.0-S074771710300066X-fx1[1].gif

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-13 23:30

3.3. Polars, tangents and poles

对于圆锥曲线 12345,$A$ 点的极线具有三种形式:
\begin{align*}\text{polar}\text{(}\text{12345})&=[\text{135}\text{][}\text{245}\text{]([}\text{12A}\text{]}\text{34}\text{+[}\text{34A}\text{]}\text{12}\text{)−[}\text{125}\text{][}\text{345}\text{]([}\text{13A}\text{]}\text{24}\text{+[}\text{24A}\text{]}\text{13})\\&=[\text{145}\text{][}\text{235}\text{]([}\text{13A}\text{]}\text{24}\text{+[}\text{24A}\text{]}\text{13}\text{)−[}\text{135}\text{][}\text{245}\text{]([}\text{14A}\text{]}\text{23}\text{+[}\text{23A}\text{]}\text{14})\\
&=[\text{145}\text{][}\text{235}\text{]([}\text{12A}\text{]}\text{34}\text{+[}\text{34A}\text{]}\text{12}\text{)−[}\text{125}\text{][}\text{345}\text{]([}\text{14A}\text{]}\text{23}\text{+[}\text{23A}\text{]}\text{14}).\end{align*}对于圆锥曲线(1234,45),$A$ 点的极线也有三种形式:
\begin{align*}\text{polar}\text{(}\text{1234}\text{,}\text{45})&=[\text{124}\text{][}\text{345}\text{]([}\text{13A}\text{]}\text{24}\text{+[}\text{24A}\text{]}\text{13}\text{)−[}\text{134}\text{][}\text{245}\text{]([}\text{34A}\text{]}\text{12}\text{+[}\text{12A}\text{]}\text{34})\\&=[\text{134}\text{][}\text{245}\text{]([}\text{23A}\text{]}\text{14}\text{+[}\text{14A}\text{]}\text{23}\text{)−[}\text{234}\text{][}\text{145}\text{]([}\text{24A}\text{]}\text{13}\text{+[}\text{13A}\text{]}\text{24})\\&=[\text{124}\text{][}\text{345}\text{]([}\text{23A}\text{]}\text{14}\text{+[}\text{14A}\text{]}\text{23}\text{)−[}\text{234}\text{][}\text{145}\text{]([}\text{34A}\text{]}\text{12}\text{+[}\text{12A}\text{]}\text{34}\text{).}\end{align*}

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit