Forgot password
 Register account
View 144|Reply 1

[几何] 平行六面体6个顶点在单位球上, 剩下2个顶点呢

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-3-14 06:21 |Read mode
已知\eqref{1}\eqref{2}\eqref{3}\eqref{4}\eqref{5}\eqref{6}求证\eqref{7}\eqref{8}
已知\eqref{1}\eqref{2}\eqref{3}\eqref{5}\eqref{6}\eqref{7}求证\eqref{4}\eqref{8}
已知\eqref{2}\eqref{3}\eqref{4}\eqref{5}\eqref{6}\eqref{7}求证\eqref{1}\eqref{8}
\begin{align}
1=&x^2+y^2+z^2 \label1\\
1=&\left(x+x_A\right)^2+\left(y+y_A\right)^2+\left(z+z_A\right)^2 \label2\\
1=&\left(x+x_B\right)^2+\left(y+y_B\right)^2+\left(z+z_B\right)^2 \label3\\
1=&\left(x+x_C\right)^2+\left(y+y_C\right)^2+\left(z+z_C\right)^2 \label4\\
1=&\left(x+x_A+x_B\right)^2+\left(y+y_A+y_B\right)^2+\left(z+z_A+z_B\right)^2\label5 \\
1=&\left(x+x_A+x_C\right)^2+\left(y+y_A+y_C\right)^2+\left(z+z_A+z_C\right)^2 \label6\\
1=&\left(x+x_B+x_C\right)^2+\left(y+y_B+y_C\right)^2+\left(z+z_B+z_C\right)^2 \label7\\
1=&\left(x+x_A+x_B+x_C\right)^2+\left(y+y_A+y_B+y_C\right)^2+\left(z+z_A+z_B+z_C\right)^2\label8
\end{align}

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2023-3-15 15:53
平行六面体的任意六个顶点可以凑出两组不同的"四点共面", 显然这两组"四点共面"有两个公共点.
如果平行六面体的其中六个顶点在单位球上, 那么这六个点分别对应"球面上两个相交的圆上的两个内接矩形", 且两个矩形有两个公共点.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:36 GMT+8

Powered by Discuz!

Processed in 0.011541 seconds, 22 queries