Forgot password?
 Register account
View 167|Reply 1

[几何] 四次曲线Cayley-Bacharach定理的应用

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-15 00:09 |Read mode

Degree-4 Cayley-Bacharach theorem

Three quartic curves pass through the same thirteen points, no five of which are collinear, no nine of which are conconic and no twelve of which are concubic. The three quartics then share a further three points.
moda-ch07
23. 让八边形的八个顶点位于一条圆锥曲线上,并交替将边着色为红色和蓝色。证明:异色边(的延伸)的其余八个交点共圆锥曲线。
size(200); path conic = slant(.2)*unitcircle;pen p; draw(conic); real[] rel ={.2,.35,.5,.6,.7,.8,0}; pair[] vertices={point(conic,0.2)}; for (int i=0;i<7;++i) { vertices.push(relpoint(conic,rel[i])); } for (int i=0;i<8;++i) { if(i%2==0){p=red;}else{p=blue;} draw(vertices[(i+1)%8]--vertices[i],p); pair a=extension(vertices[i%8],vertices[(i+1)%8],vertices[(i+3)%8],vertices[(i+4)%8]); dot(a); draw(vertices[(i+1)%8]--a--vertices[(i+3)%8],dashed); }
Let $Q_1$ be the union of red lines, $Q_2$ be the union of blue lines, and $Q_3$ be the union of the main conic with the conic passing through five of the other eight heterochromatic intersections. By the quartic version of Cayley-Bacharach, $Q_3$ must pass through the other three intersections.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-15 04:26
24. 两个四边形 $A B C D$ 和 $A ' B' C ' D '$ 内接于同一个圆。相应边的四个交点(例如 $A B$ 与 $A ' B'$)标记为 $P、Q、R$ 和 $S$。如果 $P、Q$ 和 $R$ 共线,则 $S$ 也位于这条直线上。

Let $Q_1$ be the union of red lines, $Q_2$ be the union of blue lines, and $Q_3$ be the union of the main conic with the conic passing through five of the other eight heterochromatic intersections. By the quartic version of Cayley-Bacharach, $Q_3$ must pass through the other three intersections.

Mobile version|Discuz Math Forum

2025-5-31 10:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit