Forgot password?
 Register account
View 224|Reply 4

[几何] SU(4) 中的矩阵的迹的集合

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-15 18:42 |Read mode
$\theta_j\in\mathbb R,\sum_{j=1}^4\theta_j=0,$设
\begin{cases}X=\frac14\sum_{j=1}^4\cos \theta_j\\
Y=\frac14\sum_{j=1}^4\sin \theta_j
\end{cases}求证$$\abs X^{2 / 3}+\abs Y^{2 / 3} \leq 1$$
3 Special unitary groups SU(n), n ≥ 4
Puzzle 4

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-3-15 23:20
照原文说的, 凑三倍角公式即可.

建议使用 $\texttt{\left\\{ \right\\}}$ 表示集合, 或者用 $\texttt{\vert \vert}$ 代替 $\texttt{| |}$. 主要是因为指令 $\texttt{\Set{ }}$ 将不分条件地把第一个 $\texttt{|}$ 变大. 以及, 集合中间采用 $\texttt{:}$ 或者 $\texttt{\mid}$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-15 23:32
Czhang271828 发表于 2023-3-15 16:20
$\texttt{\Set{ }}$ 将不分条件地把第一个 $\texttt{|}$ 变大.
确实. 我刚注意到这个.
documentation for package braket
In \Braket these vertical lines will expand to match the arguments, and in \Set the first vertical will expand.
...
You should use the vertical bar character “|” to input any extra vertical lines.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-15 23:41
Czhang271828 发表于 2023-3-15 16:20
照原文说的, 凑三倍角公式即可.
由(12)\[4 (X+i Y)=3 \cos (\theta )+\cos (3 \theta )+i (3 \sin (\theta )-\sin (3 \theta ))\]
分开实虚部
\begin{cases}
X={3 \cos (\theta )+\cos (3 \theta )\over4}\\
Y={3 \sin (\theta )-\sin (3 \theta )\over4}
\end{cases}用三倍角公式\begin{cases}
X=\cos^3(\theta)\\
Y=\sin^3(\theta)
\end{cases}即$\abs X^{2/3}+\abs Y^{2/3}=1$
这就是(22)的$n=1$情况. 但原文中(22)是关于spin group, 不懂啊, 可能和SU(4)有什么关系

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-3-16 00:52
Last edited by Czhang271828 2023-3-16 13:38
hbghlyj 发表于 2023-3-15 23:41
由(12)\[4 (X+i Y)=3 \cos (\theta )+\cos (3 \theta )+i (3 \sin (\theta )-\sin (3 \theta ))\]
分开实 ...
你看原文,全用复数表示后再找使得偏导等于零时的解即可。

写一下吧. 原文求的也是 $Z:=\dfrac{1}{4}(z_1+z_2+z_3+1/(z_1z_2z_3))$ 的值域. 考虑 $\dfrac{\partial Z}{\partial z_i}=0$ 得 $1-\dfrac{1}{z_1z_2z_3z_1}=0$, 从而 $z_1=z_2=z_3$ 时取等. 代入 $z_1=z_2=z_3=e^{i\theta}$ 可知
\[
4Z=[3\cos \theta+\cos(-3\theta)]+i[3\sin\theta+\sin(-3\theta)]=4\cos ^3\theta+4i\sin^3\theta.
\]
容易验证 $Z=X+iY$ 的取值在边界内, 即 $\sqrt[3]{X^2}+\sqrt[3]{Y^2}\leq 1$.

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit