|
Author |
hbghlyj
Posted 2023-3-16 18:48
可以验证$\sinh a+j\cosh a=jp$
$$\sinh a+j\cosh a=j^2\sinh a+j\cosh a=j(\cosh a+j\sinh a)=jp$$
还有$\exp(ja)=\cosh a+j\sinh a$ 这个有点意思- MatrixExp[{{0, a}, {a, 0}}] // ExpToTrig
Copy the Code \[\exp\left(
\begin{array}{cc}
0&a\\
a&0\\
\end{array}
\right)=\left(
\begin{array}{cc}
\cosh (a) & \sinh (a) \\
\sinh (a) & \cosh (a) \\
\end{array}
\right)\]复数的函数叫做function of a complex variable 而 split complex number 的函数叫做function of a motor variable
与Cauchy-Riemann equation相应是Scheffers' conditions
The function $f = u + j v$ is called D-holomorphic when
$$ 0\ =\ ({\partial \over \partial x}-j{\partial \over \partial y})(u+jv)=\ u_{x}-j^{2}v_{y}+j(v_{x}-u_{y}). $$
By considering real and imaginary components, a D-holomorphic function satisfies
$$ u_{x}=v_{y},\quad v_{x}=u_{y}. $$ |
|