Forgot password?
 Register account
View 207|Reply 2

[几何] Minkowski space

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-16 18:44 |Read mode
对于$\mathbb C$, 模长为1的点的集合为单位圆; 对于split complex number, 模长为1的点的集合为单位双曲线.
圆在一点的切线与半径正交; 单位双曲线在一点的切线与半径双曲正交(关于坐标轴对称).
正交的直线的斜率为$m,-\frac1m$; 双曲正交的直线的斜率为$m,\frac1m$.
单位圆上的点为 $p(a)=\cos a+i\sin a$; 单位双曲线上的点为 $p(a)=\cosh a+j\sinh a$, 其中$j^2=1$.
单位圆上 $p(a)$ 处的切线方向是导数方向 $ \frac {dp}{da} =-\sin a+i\cos a=ip$; 单位双曲线上 $p(a)$ 处的切线方向是导数方向 $ \frac {dp}{da} =\sinh a+j\cosh a=jp$
单位圆上的点有指数形式 $p(a)=\exp(i a)$; 单位双曲线上的点有指数形式 $p(a)=\exp(j a)$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-16 18:48
可以验证$\sinh a+j\cosh a=jp$
$$\sinh a+j\cosh a=j^2\sinh a+j\cosh a=j(\cosh a+j\sinh a)=jp$$
还有$\exp(ja)=\cosh a+j\sinh a$ 这个有点意思
  1. MatrixExp[{{0, a}, {a, 0}}] // ExpToTrig
Copy the Code
\[\exp\left(
\begin{array}{cc}
0&a\\
a&0\\
\end{array}
\right)=\left(
\begin{array}{cc}
\cosh (a) & \sinh (a) \\
\sinh (a) & \cosh (a) \\
\end{array}
\right)\]复数的函数叫做function of a complex variable 而 split complex number 的函数叫做function of a motor variable
与Cauchy-Riemann equation相应是Scheffers' conditions
The function $f = u + j v$ is called D-holomorphic when
$$ 0\ =\ ({\partial \over \partial x}-j{\partial \over \partial y})(u+jv)=\ u_{x}-j^{2}v_{y}+j(v_{x}-u_{y}). $$
By considering real and imaginary components, a D-holomorphic function satisfies
$$ u_{x}=v_{y},\quad v_{x}=u_{y}. $$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-16 18:58
Nine_point_conic.svg.png
九点圆 对应的有 九点双曲线

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit