|
将上面的方法转化成重心坐标的方法:
以下设 $\triangle ABC$ 中 $BC=a$,$CA=b$,$AB=c$,面积是$S$,$\overline{S_{\triangle XYZ}}$ 表示 $\triangle XYZ$ 的有向面积,轨迹方程上动点的重心或三线坐标是 $\alpha:\beta:\gamma$,
\begin{align*}
f(\alpha,\beta,\gamma)&=t_{11}\alpha^2+t_{22}\beta^2+t_{33}\gamma^2+2t_{12}\alpha\beta+2t_{13}\alpha\gamma+2t_{23}\beta\gamma,\\
f_1(\alpha,\beta,\gamma)&=t_{11}\alpha+t_{12}\beta+t_{13}\gamma,\\
f_2(\alpha,\beta,\gamma)&=t_{12}\alpha+t_{22}\beta+t_{23}\gamma,\\
f_3(\alpha,\beta,\gamma)&=t_{13}\alpha+t_{23}\beta+t_{33}\gamma,
\end{align*}
容易验证有如下关系:
\begin{align*}
&\alpha f_1(\alpha,\beta,\gamma)+\beta f_2(\alpha,\beta,\gamma)+\gamma f_3(\alpha,\beta,\gamma)=f(\alpha,\beta,\gamma),\\
&\alpha_1 f_1(\alpha_2,\beta_2,\gamma_2)+\beta_1 f_2(\alpha_2,\beta_2,\gamma_2)+\gamma_1 f_3(\alpha_2,\beta_2,\gamma_2)\\
={}&\alpha_2 f_1(\alpha_1,\beta_1,\gamma_1)+\beta_2 f_2(\alpha_1,\beta_1,\gamma_1)+\gamma_2 f_3(\alpha_1,\beta_1,\gamma_1)。
\end{align*}
重心坐标方程是 $f(\alpha,\beta,\gamma)=0$ 的二次曲线的焦点的重心坐标是 $\alpha_0:\beta_0:\gamma_0$,则 $\alpha_0:\beta_0:\gamma_0$ 是方程组
\begin{align*}
&\frac{(t_{11}+t_{22}-2t_{12})f(\alpha,\beta,\gamma)-(f_1(\alpha,\beta,\gamma)-f_2(\alpha,\beta,\gamma))^2}{c^2}\\
={}&\frac{(t_{11}+t_{33}-2t_{13})f(\alpha,\beta,\gamma)-(f_1(\alpha,\beta,\gamma)-f_3(\alpha,\beta,\gamma))^2}{b^2}\\
={}&\frac{(t_{22}+t_{33}-2t_{23})f(\alpha,\beta,\gamma)-(f_2(\alpha,\beta,\gamma)-f_3(\alpha,\beta,\gamma))^2}{a^2}
\end{align*}
的解,从上面的方程组消去 $f(\alpha,\beta,\gamma)$,得到的方程就
\begin{align*}
&\left((t_{11}+t_{33}-2t_{13})a^2-(t_{11}+t_{22}-2t_{12})b^2\right)(f_1(\alpha,\beta,\gamma)-f_2(\alpha,\beta,\gamma))^2\\
&{}+\left((t_{11}+t_{22}-2t_{12})b^2-(t_{11}+t_{33}-2t_{13})c^2\right)(f_2(\alpha,\beta,\gamma)-f_3(\alpha,\beta,\gamma))^2\\
&{}+\left((t_{22}+t_{33}-2t_{23})c^2-(t_{11}+t_{22}-2t_{12})a^2\right)(f_3(\alpha,\beta,\gamma)-f_1(\alpha,\beta,\gamma))^2=0
\end{align*}
是二次曲线 $f(\alpha,\beta,\gamma)=0$ 主轴的重心坐标方程。 |
|