|
Author |
hbghlyj
Posted 2023-3-19 19:27
MSE
Lemma: 对于任何 $x \geqslant 0,n \in \mathbb{N}_+$, $\bigl[[x]^{\frac{1}{n}}\bigr] = [x^{\frac{1}{n}}]$.
Proof: 容易看出 $\bigl[[x]^{\frac{1}{n}}\bigr] \leqslant [x^{\frac{1}{n}}]$. 假设 $a = [x^{\frac{1}{n}}] \in \mathbb{N}$, 则$$
x = (x^{\frac{1}{n}})^n \geqslant a^n \Longrightarrow [x] \geqslant a^n \Longrightarrow [x]^{\frac{1}{n}} \geqslant a \Longrightarrow \bigl[[x]^{\frac{1}{n}}\bigr] \geqslant a = [x^{\frac{1}{n}}].
$$
因此,$\bigl[[x]^{\frac{1}{n}}\bigr] = [x^{\frac{1}{n}}]$.
现在回到问题。根据引理,$$
\sum_{m = 1}^{2^n} \left[ \left[ \frac{n}{1 + π(m)} \right]^{\frac{1}{n}} \right] = \sum_{m = 1}^{2^n} \left[ \left( \frac{n}{1 + π(m)} \right)^{\frac{1}{n}} \right].
$$
注意 $n < 2^n$ 对于任何 $n \geqslant 1$,因此对于任何 $1 \leqslant m \leqslant 2^n$,$$
0 < \left( \frac{n}{1 + π(m)} \right)^{\frac{1}{n}} \leqslant n^{\frac{1}{n}} < 2 \Longrightarrow \left[ \left( \frac{n}{1 + π(m)} \right)^{\frac{1}{n}} \right] = 0 \text{ or } 1.
$$
By Bertrand's postulate, $p_n \leqslant 2^n$ for all $n \geqslant 1$, thus $π(m) \leqslant n - 1$ for $1 \leqslant m \leqslant p_n - 1$ and $π(m) \geqslant n$ for $p_n \leqslant m \leqslant 2^n$, which implies\begin{align*}
\sum_{m = 1}^{2^n} \left[ \left( \frac{n}{1 + π(m)} \right)^{\frac{1}{n}} \right] &= \sum_{\substack{1 \leqslant m \leqslant 2^n\\π(m) \leqslant n - 1}} \left[ \left( \frac{n}{1 + π(m)} \right)^{\frac{1}{n}} \right] + \sum_{\substack{1 \leqslant m \leqslant 2^n\\π(m) \geqslant n}} \left[ \left( \frac{n}{1 + π(m)} \right)^{\frac{1}{n}} \right]\\
&= \sum_{\substack{1 \leqslant m \leqslant 2^n\\π(m) \leqslant n - 1}} 1 + \sum_{\substack{1 \leqslant m \leqslant 2^n\\π(m) \geqslant n}} 0 = \sum_{m = 1}^{p_n - 1} 1 + \sum_{m = p_n}^{2^n} 0 = p_n - 1.
\end{align*}
因此,$$
1 + \sum_{m = 1}^{2^n} \left[ \left[ \frac{n}{1 + π(m)} \right]^{\frac{1}{n}} \right] = 1 + \sum_{m = 1}^{2^n} \left[ \left( \frac{n}{1 + π(m)} \right)^{\frac{1}{n}} \right] = p_n.
$$ |
|