Forgot password?
 Create new account
View 4006|Reply 13

[函数] 转一个求函数$y = \sqrt{x + 27} + \sqrt{13 - x} + \sqrt{x}$最值

[Copy link]

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

hongxian Posted at 2013-8-11 17:55:48 |Read mode
求函数$y = \sqrt{x + 27}  + \sqrt{13 - x}  + \sqrt{x}$最大值和最小值



来自:aoshoo.com/bbs1/dispbbs.asp?boardid=71&Id=25057

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2013-8-11 18:33:26

9

Threads

23

Posts

169

Credits

Credits
169

Show all posts

琉璃幻 Posted at 2013-8-11 20:46:20
Last edited by 琉璃幻 at 2013-8-11 21:00:00当X=0时取最小. 最大值科西不等(jie)式(shi)。 最小值嘛。。。。
\[\sqrt{x}+\sqrt{13-x}+\sqrt{x+27}\geqslant\sqrt{x+13-x}+\sqrt{x+27}=\sqrt{13}+\sqrt{27+x}\geqslant\sqrt{13}+\sqrt{27}\]

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2013-8-11 21:05:58
回复 3# 琉璃幻

好像第一次见幻幻解题……厉害耶

9

Threads

23

Posts

169

Credits

Credits
169

Show all posts

琉璃幻 Posted at 2013-8-11 21:18:27
回复 4# kuing


   主要在贴吧活动

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-8-17 13:50:25
回复 5# 琉璃幻
哪个贴吧?用户名?
常来本论坛哦

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

福州小江 Posted at 2013-9-9 16:38:13
回复 3# 琉璃幻


    牛,09年全国联赛一试11题就这样被秒了

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-10 19:12:19
幻幻最小值,我来最大值:
$x+9\geqslant6\sqrt x\Longrightarrow\sqrt x\leqslant\dfrac{x+9}6\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(1)$,
$x+27+36\geqslant12\sqrt{x+27}\Longrightarrow\sqrt {x+27}\leqslant\dfrac{x+63}{12}\cdots\cdots\cdots\cdots\cdots\cdots(2)$,
$13-x+4\geqslant4\sqrt{13-x}\Longrightarrow\sqrt {13-x}\leqslant\dfrac{17-x}{4}\cdots\cdots\cdots\cdots\cdots\cdots\cdots(3)$
(1)+(2)+(3)得,$y=\sqrt x+\sqrt {x+27}+\sqrt {13-x}\leqslant\dfrac{x+9}6+\dfrac{x+63}{12}+\dfrac{17-x}{4}=11$,取等号略。

7

Threads

128

Posts

879

Credits

Credits
879

Show all posts

第一章 Posted at 2013-9-10 20:15:33
赶脚像切线?

7

Threads

128

Posts

879

Credits

Credits
879

Show all posts

第一章 Posted at 2013-9-10 20:48:26
Last edited by 第一章 at 2013-9-10 21:58:00其妙真的很奇妙,从没想过这种题可以这样处理……
写个类似的,求$y=2x-\sqrt{x-1}$的最小值:
$x-1+\frac{1}{16}\ge \frac{1}{2}\sqrt{x-1}$,
$\sqrt{x-1}\le2x-\frac{8}{15}$
于是$y=2x-\sqrt{x-1}\ge\frac{8}{15}$.

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

福州小江 Posted at 2013-9-11 07:42:01
回复 10# 第一章


    就觉得昨晚少了一个2,早上一看,你改过来了

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2013-9-11 10:41:28
3楼这么解,没见过,威武~~~~
8楼也不错

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-12 23:22:56
幻幻给出了一种最小值的求法,下面再来一种最小值的求法:
显然函数$y=\sqrt x+\sqrt {x+27}+\sqrt {13-x}$的定义域是[0,13],故$\sqrt x\geqslant\dfrac x{\sqrt{13}}\Longleftrightarrow13x\geqslant x^2\Longleftrightarrow 0\leqslant x \leqslant 13$,

$\sqrt{13-x}\geqslant\sqrt{13}-\dfrac x{\sqrt{13}}\Longleftrightarrow\sqrt{13(13-x)}\geqslant 13-x\Longleftrightarrow13(13-x)\geqslant(13-x)^2  \Longleftrightarrow 0\leqslant x\leqslant 13$,

以上两式相加得,$\sqrt x+\sqrt {13-x}\geqslant\dfrac x{\sqrt{13}}+\sqrt{13}-\dfrac x{\sqrt{13}}=\sqrt{13}$,

于是,$y=\sqrt x+\sqrt {13-x}+\sqrt {x+27}\geqslant\sqrt{13}+\sqrt {x+27}\geqslant\sqrt{13}+\sqrt {27}$,取等号略。

7

Threads

31

Posts

213

Credits

Credits
213

Show all posts

福州小江 Posted at 2013-9-12 23:30:43
回复 13# 其妙


    牛

手机版Mobile version|Leisure Math Forum

2025-4-21 14:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list