Forgot password?
 Register account
View 4152|Reply 13

[函数] 转一个求函数$y = \sqrt{x + 27} + \sqrt{13 - x} + \sqrt{x}$最值

[Copy link]

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

hongxian Posted 2013-8-11 17:55 |Read mode
求函数$y = \sqrt{x + 27}  + \sqrt{13 - x}  + \sqrt{x}$最大值和最小值



来自:aoshoo.com/bbs1/dispbbs.asp?boardid=71&Id=25057

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-8-11 18:33

8

Threads

20

Posts

149

Credits

Credits
149

Show all posts

琉璃幻 Posted 2013-8-11 20:46
Last edited by 琉璃幻 2013-8-11 21:00当X=0时取最小. 最大值科西不等(jie)式(shi)。 最小值嘛。。。。
\[\sqrt{x}+\sqrt{13-x}+\sqrt{x+27}\geqslant\sqrt{x+13-x}+\sqrt{x+27}=\sqrt{13}+\sqrt{27+x}\geqslant\sqrt{13}+\sqrt{27}\]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-8-11 21:05
回复 3# 琉璃幻

好像第一次见幻幻解题……厉害耶

8

Threads

20

Posts

149

Credits

Credits
149

Show all posts

琉璃幻 Posted 2013-8-11 21:18
回复 4# kuing


   主要在贴吧活动

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-8-17 13:50
回复 5# 琉璃幻
哪个贴吧?用户名?
常来本论坛哦

7

Threads

29

Posts

203

Credits

Credits
203

Show all posts

福州小江 Posted 2013-9-9 16:38
回复 3# 琉璃幻


    牛,09年全国联赛一试11题就这样被秒了

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-10 19:12
幻幻最小值,我来最大值:
$x+9\geqslant6\sqrt x\Longrightarrow\sqrt x\leqslant\dfrac{x+9}6\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots(1)$,
$x+27+36\geqslant12\sqrt{x+27}\Longrightarrow\sqrt {x+27}\leqslant\dfrac{x+63}{12}\cdots\cdots\cdots\cdots\cdots\cdots(2)$,
$13-x+4\geqslant4\sqrt{13-x}\Longrightarrow\sqrt {13-x}\leqslant\dfrac{17-x}{4}\cdots\cdots\cdots\cdots\cdots\cdots\cdots(3)$
(1)+(2)+(3)得,$y=\sqrt x+\sqrt {x+27}+\sqrt {13-x}\leqslant\dfrac{x+9}6+\dfrac{x+63}{12}+\dfrac{17-x}{4}=11$,取等号略。

7

Threads

127

Posts

874

Credits

Credits
874

Show all posts

第一章 Posted 2013-9-10 20:15
赶脚像切线?

7

Threads

127

Posts

874

Credits

Credits
874

Show all posts

第一章 Posted 2013-9-10 20:48
Last edited by 第一章 2013-9-10 21:58其妙真的很奇妙,从没想过这种题可以这样处理……
写个类似的,求$y=2x-\sqrt{x-1}$的最小值:
$x-1+\frac{1}{16}\ge \frac{1}{2}\sqrt{x-1}$,
$\sqrt{x-1}\le2x-\frac{8}{15}$
于是$y=2x-\sqrt{x-1}\ge\frac{8}{15}$.

7

Threads

29

Posts

203

Credits

Credits
203

Show all posts

福州小江 Posted 2013-9-11 07:42
回复 10# 第一章


    就觉得昨晚少了一个2,早上一看,你改过来了

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2013-9-11 10:41
3楼这么解,没见过,威武~~~~
8楼也不错

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-9-12 23:22
幻幻给出了一种最小值的求法,下面再来一种最小值的求法:
显然函数$y=\sqrt x+\sqrt {x+27}+\sqrt {13-x}$的定义域是[0,13],故$\sqrt x\geqslant\dfrac x{\sqrt{13}}\Longleftrightarrow13x\geqslant x^2\Longleftrightarrow 0\leqslant x \leqslant 13$,

$\sqrt{13-x}\geqslant\sqrt{13}-\dfrac x{\sqrt{13}}\Longleftrightarrow\sqrt{13(13-x)}\geqslant 13-x\Longleftrightarrow13(13-x)\geqslant(13-x)^2  \Longleftrightarrow 0\leqslant x\leqslant 13$,

以上两式相加得,$\sqrt x+\sqrt {13-x}\geqslant\dfrac x{\sqrt{13}}+\sqrt{13}-\dfrac x{\sqrt{13}}=\sqrt{13}$,

于是,$y=\sqrt x+\sqrt {13-x}+\sqrt {x+27}\geqslant\sqrt{13}+\sqrt {x+27}\geqslant\sqrt{13}+\sqrt {27}$,取等号略。

7

Threads

29

Posts

203

Credits

Credits
203

Show all posts

福州小江 Posted 2013-9-12 23:30
回复 13# 其妙


    牛

Mobile version|Discuz Math Forum

2025-6-5 21:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit