Forgot password?
 Register account
View 139|Reply 0

[不等式] Hölder不等式变形

[Copy link]

3157

Threads

7925

Posts

610K

Credits

Credits
64218
QQ

Show all posts

hbghlyj Posted 2023-3-24 18:34 |Read mode
连续函数$f:\mathbb R\to\mathbb R$满足$f(x+2)=f(x+1)+f(x),f(0)=0,f(1)=1.$

$f(x)=\frac{\left(\sqrt{5}+1\over2\right)^x-\left(\frac{2}{\sqrt{5}+1}\right)^x \cos (\pi  x)}{\sqrt{5}}$
\begin{align*}f(x+2)-f(x+1)&=\frac{\left(1+\sqrt{5}\over2\right)^{x+2} -\left(\frac{2}{1+\sqrt{5}}\right)^{x+2}\cos (\pi  (x+2))}{\sqrt{5}}-\frac{\left(1+\sqrt{5}\over2\right)^{x+1}-\left(2\over1+\sqrt{5}\right)^{x+1}\cos (\pi  (x+1))}{\sqrt{5}}\\
&=\frac{\left(1+\sqrt{5}\over2\right)^{x+2}-\left(1+\sqrt{5}\over2\right)^{x+1}}{\sqrt{5}}-\frac{\left(\frac{2}{1+\sqrt{5}}\right)^{x+2}\cos (\pi x)+\left(2\over1+\sqrt{5}\right)^{x+1}\cos (\pi  x)}{\sqrt{5}}
\\&=\frac{\left(1+\sqrt{5}\over2\right)^x-\left(\frac{2}{1+\sqrt{5}}\right)^x \cos (\pi  x)}{\sqrt{5}}\\&=f(x)\end{align*}

Mobile version|Discuz Math Forum

2025-6-6 13:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit