16
18
0
Show all posts
Bump
Canhuang 发表于 2023-3-24 20:57 $b\in \mathbb{R_+}$
673
110K
218
点评 Canhuang 个人觉得不提取`(b-1)^2`因式反而更好做
Canhuang 发表于 2023-3-25 08:39 $\iff h(b)=63+(\dfrac{1}{b^2}+2b)(\dfrac{2}{b^4}+4b^2-27)\geqslant 0$ $f(b)=\dfrac{1}{b^2}+2b,f^{'}( ...
f'
f^{'}
kuing 发表于 2023-3-25 14:27 \[h'(b)=(63+f(b)g(b))'=f'(b)g(b)+f(b)g'(b),\] 当 `b\ge1` 时由 `g'(b)\ge f'(b)\ge0` 并不能推出 `h'( ...
Canhuang 发表于 2023-3-25 15:16 直观上理解, f(b)恒>0,当g(b)<0时,$|g(b)f(b)|$在不断减小
$\LaTeX$ formula tutorial Reply post To last page
Mobile version
2025-7-15 14:55 GMT+8
Powered by Discuz!
Processed in 0.014884 seconds, 29 queries