Forgot password?
 Register account
View 158|Reply 1

[几何] 对直线上两个线段张角相等的点

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-24 22:36 |Read mode
四点A,B,C,D在直线L上,在直线L上存在一点E使$\overline{EA}\cdot\overline{EC}=\overline{EB}\cdot\overline{ED}$

使$∡APC$与$∡BPD$相等、相反的点的轨迹是两个圆
证明:
由分角定理$\frac{AP\sin∡APC}{BP\sin∡BPC}=\frac{AC}{BC}$,$\frac{AP\sin∡APD}{BP\sin∡BPD}=\frac{AD}{BD}$,
相乘得$\frac{AP^2}{BP^2}=\frac{AC·AD}{BC·BD}$
所以$\frac{AP}{BP}=\pm\sqrt{\frac{AC·AD}{BC·BD}}$是定值,所以P的轨迹是两个圆。


来源: 某人发的帖子, 看了感觉很乱

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-24 22:53
zh.wikipedia.org/wiki/等角线

如图,△ABC,D,E在BC边上,AE是AD关于∠BAC等角线,则有
    $ {AB^{2} \over AC^{2}}={BD\cdot BE \over CD\cdot CE} $
    $ AB\cdot AC=AD\cdot AE+{\sqrt {BD\cdot BE\cdot CE\cdot CD}} $

Mobile version|Discuz Math Forum

2025-5-31 11:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit