Forgot password?
 Create new account
View 104|Reply 0

Cesàro和

[Copy link]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2023-3-27 16:41:40 |Read mode
令$\{a_n\}$为一数列,且令
$$ s_{k}=a_{1}+\cdots +a_{k} $$
为数列前$k$项的部分和:
$$ \sum _{n=1}^{\infty }a_{n} $$
若$ \lim _{n\to \infty }{\frac {s_{1}+\cdots +s_{n}}{n}}=\alpha $,则此数列$\{a_n\}$的Cesàro和存在,且其值为$α$.
WWch8 page 159, Ex 5
级数$1+0+0-1+0+1+0+0-1+...$, 其中每个$-1$前有2个0, $+1$前有1个0, 它的Cesàro和为$\frac35$.
证明:
数列$s_k$的循环周期为$1,1,1,0,0$, 它的平均数为$\lim _{n\to \infty }{\frac {s_{1}+\cdots +s_{n}}{n}}=\frac35$.

手机版Mobile version|Leisure Math Forum

2025-4-21 01:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list