Forgot password?
 Register account
View 141|Reply 0

Borel和

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2023-3-27 16:49 |Read mode
WWch8 page 159, Ex 6
级数$1-2!+4!-...$不可Borel求和, 但$1+0-2!+0+4!+...$可Borel求和.

证明
$a_n=(-1)^n(2n)!$
$$\phi(tz)=\sum _{n=0}^{\infty } \frac{(-1)^n (2 n)! t^n z^n}{n!}$$因为$\frac{ (2 n)! t^n z^n}{n!}\to\infty(n\to\infty)$, 所以$\phi(tz)$发散, 级数$1-2!+4!-...$不可Borel求和.

$a_{2n+1}=0,a_{2n}=(-1)^n(2n)!$
$$\phi(tz)=\sum _{n=0}^{\infty } \frac{(-1)^n (2 n)! t^{2n} z^{2n}}{(2n)!}=\frac{1}{1+t^2 z^2}\quad,\abs{tz}<1$$所以$$\int_{0}^{\infty} e^{-t} \phi(t) d t=\int_{0}^{\infty} e^{-t} \frac1{1+t^2} d t<\int_{0}^{\infty}\frac1{1+t^2} d t=\frac\pi2$$积分收敛, $1+0-2!+0+4!+...$可Borel求和.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 07:01 GMT+8

Powered by Discuz!

Processed in 0.016829 second(s), 21 queries

× Quick Reply To Top Edit