Forgot password?
 Register account
View 313|Reply 6

[几何] 存在P使PAB,PBC,PCD,PDA内切圆循环相切 当且仅当 $ABCD$ 有内切圆

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-27 21:40 |Read mode
Geometry Unbound Problems for Section 11.3
6. 对于凸四边形$ABCD$,证明存在点$P$使得三角形$\triangle PAB$和$\triangle PBC$的内切圆相切,$\triangle PBC$和$\triangle PCD$的内切圆相切, $\triangle PCD$ 和 $\triangle PDA$ 的内切圆相切,以及 $\triangle PDA$ 和 $\triangle PAB$ 的内切圆相切,当且仅当 $ABCD$ 有一个内切圆。

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2023-3-29 20:33
有如下引理:若四边形对边之和相等,则其有内切圆,用同一法不难证明。
接下来证原题:如图,设四个内心为$I_1,I_2,I_3,I_4$,四个切点为$X,Y,Z,W$,由$PI_1$平分$ \angle APB $等,有$I_1X=I_1Y$等,故$\odot (XYZW)$为$I_1I_2I_3I_4$的内切圆,且以$P$为圆心,设半径为$r$,则
\begin{align}AB+CD &=AK+BK+CM+DM  \notag\\ &=AX+BY+CZ+DW \notag\\&=PA+PB+PC+PD-4r  \notag\end{align}由对称性可知$AD+BC$也为此值,由引理得证。
捕获.PNG

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-29 20:40
若 $ABCD$ 有内切圆,如何证明存在点$P$呢?

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2023-3-29 20:57
hbghlyj 发表于 2023-3-29 20:40
若 $ABCD$ 有内切圆,如何证明存在点$P$呢?
作圆$(A,AK)$等四个圆,是不是等价于证明与四个相切圆都相切的圆有且只有一个?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-30 00:25
FG201108
Theorem 3. A convex quadrilateral is subdivided into four nonoverlapping triangles by its diagonals. Consider the four tangency points of the incircles in these triangles on one of the diagonals. It is a tangential quadrilateral if and only if the distance between two tangency points on one side of the second diagonal is equal to the distance between the two tangency points on the other side of that diagonal.
$type output.svg (38.73 KB, Downloads: 61)
By the two tangent theorem we have
\begin{aligned}
& A T_1=A T_1''=A P-P T_1'', \\
& B T_1=B T_1'=B P-P T_1',
\end{aligned}so that
$$
A B=A T_1+B T_1=A P+B P-P T_1^{\prime\prime}-P T_1'.
$$
Since $P T_1^{\prime\prime}=P T_1'$
$$
A B=A P+B P-2 P T_1'
$$
In the same way
$$
C D=C P+D P-2 P T_3'
$$
Adding the last two equalities yields
$$
A B+C D=A C+B D-2 T_1'T_3'
$$
In the same way we get
$$
B C+D A=A C+B D-2 T_2'T_4'
$$
Thus
$$
A B+C D-B C-D A=-2\left(T_1'T_3'-T_2'T_4'\right)
$$
The quadrilateral has an incircle if and only if $A B+C D=B C+D A$. Hence it is a tangential quadrilateral if and only if
$$
T_1'T_3'=T_2'T_4' ⇔ T_1'T_2'+T_2'T_3'=T_2'T_3'+T_3'T_4' ⇔ T_1'T_2'=T_3'T_4'.
$$
Note that both $T_1'T_3'=T_2'T_4'$ and $T_1'T_2'=T_3'T_4'$ are characterizations of tangential quadrilaterals. It was the first of these two that was proved in [18].
96_03-25[1].gif


Theorem 1. A convex quadrilateral is tangential if and only if the incircles in the two triangles formed by a diagonal are tangent to each other.
Proof. In a convex quadrilateral $A B C D$, let the incircles in triangles $A B C,C D A$, $B C D$ and $D A B$ be tangent to the diagonals $A C$ and $B D$ at the points $X,Y,Z$ and $W$ respectively (see Figure 2). First we prove that
$$
Z W=\frac{1}{2}|a-b+c-d|=X Y\text {. }
$$
Using the two tangent theorem, we have $B W=a-w$ and $B Z=b-z$, so
$$
Z W=B W-B Z=a-w-b+z .
$$
In the same way $D W=d-w$ and $D Z=c-z$, so
$$
Z W=D Z-D W=c-z-d+w .
$$
Adding these yields
$$
2 Z W=a-w-b+z+c-z-d+w=a-b+c-d .
$$
Hence
$$
Z W=\frac{1}{2}|a-b+c-d|
$$
where we put an absolute value since $Z$ and $W$ can "change places" in some quadrilaterals; that is, it is possible for $W$ to be closer to $B$ than $Z$ is. Then we would have $Z W=\frac{1}{2}(-a+b-c+d)$
The formula for $XY$ is derived in the same way.
Now two incircles on different sides of a diagonal are tangent to each other if and only if $XY=0$ or $ZW=0$. These are equivalent to $a+c=b+d$, which proves the theorem according to the Pitot theorem.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-30 01:42
本楼转换SVG

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-30 01:49
Ly-lie 发表于 2023-3-29 13:57
作圆$(A,AK)$等四个圆,是不是等价于证明与四个相切圆都相切的圆有且只有一个? ...
从5#看出1#题错了:
存在点$P$推出$T_1'T_2'=T_3'T_4'=0$推出$ABCD$有内切圆.
但$ABCD$有内切圆只能推出$T_1'T_2'=T_3'T_4'$ 不能推出它们=0,也就不能推出存在点P.


书上这题标Original应该是Kedlaya原创题出错了

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit