Forgot password?
 Create new account
View 2599|Reply 1

[不等式] 有一个问题想不出

[Copy link]

1

Threads

0

Posts

5

Credits

Credits
5

Show all posts

abc Posted at 2013-8-13 13:53:49 |Read mode
abc.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2013-8-13 18:34:28
设 $x\geqslant y\geqslant 0$,则

(1)若 $p\geqslant 2$,则
\[2(x^p+y^p)\leqslant (x+y)^p+(x-y)^p;\]

(2)若 $0<p<2$,则
\[2(x^p+y^p)\geqslant (x+y)^p+(x-y)^p.\]

证:令
\[f(y)=(x+y)^p+(x-y)^p-2(x^p+y^p),\]
求导得
\begin{align*}
f'(y)&=p\bigl((x+y)^{p-1}-(x-y)^{p-1}-2y^{p-1}\bigr) \\
& =py^{p-1}\left( \left( \frac xy+1 \right)^{p-1}-\left( \frac xy-1 \right)^{p-1}-2 \right),
\end{align*}

令 $x=ty$,则 $t\geqslant 1$,令
\[g(t)=(t+1)^{p-1}-(t-1)^{p-1}-2,\]
求导得
\[g'(t)=(p-1)\bigl((t+1)^{p-2}-(t-1)^{p-2}\bigr).\]

若 $p\geqslant 2$,则
\[g'(t)\geqslant 0\riff g(t)\geqslant g(1)=2^{p-1}-2\geqslant 0\riff f'(y)\geqslant 0\riff f(y)\geqslant f(0)=0;\]

若 $1\leqslant p<2$,则
\[g'(t)\leqslant 0\riff g(t)\leqslant g(1)=2^{p-1}-2\leqslant 0\riff f'(y)\leqslant 0\riff f(y)\leqslant f(0)=0;\]

若 $0<p<1$,则
\[g(t)<-2<0\riff f'(y)<0\riff f(y)\leqslant f(0)=0.\]

综上,得证。


回到一楼的题目,将上面的 $x$, $y$ 换成 $(1+x)/2$, $(1-x)/2$ 即可。

手机版Mobile version|Leisure Math Forum

2025-4-21 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list